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ABSTRACT 

The conventional practice in estimating DSGE models is to rely on seasonally adjusted data. 

While convenient, this approach distorts the microeconomic foundations of the model. An alternative 

is to model seasonality explicitly, but this often introduces severe misspecification. This paper 

proposes a middle ground: using year-over-year growth rates instead of quarter-over-quarter growth 

rates, which allows the model to endogenously determine the seasonal adjustment. This approach 

greatly improves forecast accuracy by more than 20% while keeping the internal consistency of the 

model. Moreover, we show that model misspecification and seasonal adjustment can offset each 

other, implying that seasonality should be treated as model-specific rather than imposed 

exogenously. Empirical results for U.S. and Russian data confirm that structural seasonality 

improves forecasting performance, and model fit relative to conventional seasonal adjustment 

methods. 

 

Keywords: DSGE; seasonality; structural modeling. 

JEL-classification: C13, C32, E32, E52. 
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INTRODUCTION 

It is standard practice in macroeconomics to apply seasonal adjustment procedures—such 

as X-13 ARIMA-SEATS or TRAMO/SEATS [Gomez and Maravall (1996)]—before using data in 

empirical analysis. These methods are widely employed by statistical agencies and are based on a 

univariate approach, extracting seasonal patterns variable by variable without considering cross-

variable consistency.  

This paper highlights a fundamental tension that arises when seasonally adjusted data are 

used in a structural DSGE model. Denote an unadjusted (raw) log variable by xt, its seasonally 

adjusted counterpart by xsa,t, and the seasonal factor by xsf,t, so that xt= xsa,t+ xsf,t. 

Two transparent examples make the problem immediate. First, consider the Euler equation 

(without habit) written in terms of unadjusted consumption and inflation (equation (1) below). After 

substituting ct=csa,t+csf,t and pt=psa,t+psf,t, the Euler equation reduces to its seasonally adjusted form 

(denoted (1SA)) only under the restrictive condition that the expected change in the seasonal factor 

of log-consumption equals the seasonal factor in inflation: 
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Second, consider a Cobb–Douglas production function with TFP zy,t (2).  
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Writing each argument as the sum of its seasonally adjusted component and seasonal factor, 

the production relation is consistent with its seasonally adjusted counterpart (call it (2SA)) only if the 

seasonal factor of output ysf,t equals the weighted combination of the capital and labor seasonal 

factors: 

 
    

ttsaKtsaKtytsa zklzy  1,,,, )1(expexp 
 (2SA) 

where αK (and 1− αK) are model parameters (weights). Both equivalence conditions are highly 

restrictive and unlikely to hold in practice. 

These discrepancies are not minor: for U.S. GDP, seasonally adjusted q/q growth rates retain 

only 61.9% of the variance of their unadjusted counterparts (80% for PCE inflation), and the average 

difference between y/y growth rates of SA and NSA GDP is 0.4% (RMSE). In other words, seasonal 

adjustment removes a large share of the underlying variability that the model is meant to explain. 

These observations echo earlier discussions in the literature. [Ghysels (1988)] emphasised 

that seasonal adjustment may remove useful information; [Sims (1993)] and [Hansen and Sargent 

(1993)] stressed that, while unadjusted data are preferable in theory, model misspecification can 

                                                        
1 Ct is consumption at period t, Rt – is gross nominal interest rate, Pt is price level at period t, ct – is log of 
consumption divided by TFP level, pt – is inflation, rt – is log of Rt, zt – is growth rate of TFP. 
2 Yt – is output, Lt – is amount of labor, Kt is capital, Zt – is unit root TFP, Zy,t – is stationary TFP, yt is log of 
output divided by TFP level Zt, lt is log of labor, Kt is log of capital divided by TFP level Zt, zt is growth rate of 
TFP Zt, zy,t is log of stationary TFP Zy,t  
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make seasonal adjustment the lesser practical evil. [Saijo (2013)] and [Christiano and Todd (2002)] 

provide related empirical and simulation evidence that the choice between seasonally adjusted and 

unadjusted data matters for parameter estimates and business-cycle properties. 

Traditional approaches to seasonality in macroeconomics can be broadly classified into two 

categories. The conventional method relies on univariate filters, such as X-13 ARIMA-SEATS, which 

are simple to implement and allow for time-varying seasonal patterns but distort the microeconomic 

foundations of structural models by ignoring cross-variable consistency. Alternative strategies 

incorporate seasonality directly into the model, such as through season-specific parameters [Hansen 

and Sargent (1993); Saijo (2013)] or seasonal autoregressive processes [Ghysels (1988)]. While 

these preserve some theoretical structure, they often exacerbate model misspecification by imposing 

rigid forms of seasonality (e.g., fixed patterns in season-specific parameters), requiring more 

complex estimation techniques. 

Building on these insights, this paper proposes a compromise that keeps the microeconomic 

structure of the model intact while reducing misspecification introduced by an exogenous seasonal 

pre-filter. The key idea is to treat year-over-year (y/y) growth rates as observed and to leave quarter-

to-quarter (q/q) seasonal dynamics as unobserved — that is, to let the model endogenously 

determine the short-run seasonal pattern consistent with its structural equations. In practice, we treat 

xyy,t (log y/y growth) as the measurement variable and allow the model to infer the implied q/q 

seasonal adjustments via the state-space representation; measurement errors capture time-

variation in empirical seasonal patterns when needed. 

I show that this approach helps maintain the model’s microeconomic foundations (i.e., it 

avoids imposing cross-variable restrictions on seasonal components that are not implied by the 

theory) while improving forecasting performance in both point and density metrics. Empirical 

exercises on U.S. and Russian datasets — together with simulation and robustness checks — 

demonstrate that letting the model chooses the seasonal adjustment leads to materially different 

parameter estimates and, in many cases, substantially better short- and medium-run forecasts than 

conventional seasonally adjusted data. 

The remainder of the paper is organized as follows. Section 2 presents the DSGE model, 

data and the experimental design. Section 3 reports estimation results and a detailed comparison of 

forecasting performance under alternative treatments of seasonality. Section 4 contains robustness 

checks, including simulated data and an application to Russian data. Section 5 concludes and 

discusses practical implications for applied DSGE work. 
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1. MODEL, EXPERIMENT 

The key argument against structural seasonality (and usage of unadjusted data) is 

misspecification. For tractability, we employ a simple DSGE model with a conventional Taylor-type 

rule. The baseline model is the simple DSGE with conventional Taylor rule from [Ivashchenko (2025)] 

presented in the appendix. It will be called AR0. The model includes some key features such as 

price rigidity, fiscal policy, and monetary policy rule. 

Few modifications of the model are considered. The original version assumes that all 

exogenous processes are AR0 (3). Alternative is AR1 (4) and ARSA (5)-(7). ARSA version is more 

conventional approach of modeling seasonality within DSGE model. It implies that seasonality 

comes from seasonal shocks.  

 ttz *,,*0*,    (3) 

 ttt zz *,,*0,*11*,,*1*, )1(     (4) 

 tSFtSAt zzz ,*,,*,*,   (5) 

 tSAtSAtSA zz ,*,,*0,*11,*,,*1,*, )1(     (6) 

 tSFtSFtSF zz ,*,4,*,,*4,*,     (7) 

The key idea of the proposed structural seasonal adjustment is to use observed variables. 

Year-over-year growth rates are unaffected by seasonal factors. So, if q/q growth rates are 

unobserved than structural model chooses seasonality on the basis of observed y/y growth rates. It 

should be noted that y/y growth rates are observed with measurement errors. This corresponds to a 

fixed seasonal pattern without measurement errors, similar to the approach in [Saijo (2013)]. 

However, conventional seasonality is changing over time. So, measurement errors would capture 

these changes if it is needed (standard deviation of measurement errors is part of parameters).  

The model would be estimated on dataset for USA from 2003q1 till 2024q4. GDP log-growth 

rate y/y NSA and personal consumption expenditure deflator y/y NSA are used. Growth rates of BIS 

nominal and real exchange rates average in quarter (q/q). And shadow rate is used as interest rate 

[Wu and Xia (2016)]. The estimation with additional (q/q) time-series would be done for investigation 

differences between conventional and structural seasonality. This implies the use of q/q seasonally 

adjusted GDP log-growth and PCE deflator. The version with (3)-(5) shocks would use another q/q 

growth rates (without seasonal adjustment). It will show how good direct modeling of seasonal 

factors is. All priors are presented at appendix. 

Differences in estimated parameters highlight the importance of structural seasonality. 

Difference in seasonally adjusted growth rates q/q would be additional view. The most important 

view is forecasting ability of models with conventional seasonality vs structural seasonality.  

Further experiments use simulated data (from model with ARSA shocks) and comparison 

results on it. And some robustness test on Russian data. 
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2. RESULTS 

2.1 Estimated values of parameters 

The model is estimated with and without q/q growth rates. Table 1 reports estimated values, 

which differ substantially across key parameters. The inclusion of q/q data alters parameter 

estimates, as does the choice of shock specification. It illustrates importance of seasonal adjustment 

to parameters (and model dynamic). Other parameters also differ substantially, but reporting an 

extended table would not alter the main conclusions. 

Table 1. Posterior modes for some parameters in different version 

Parameter AR0 

AR0 with 

q/q AR1 

AR1 with 

q/q ARSA 

ARSA with 

q/q 

αK 5.93E-01 4.83E-01 4.90E-01 4.45E-01 4.86E-01 4.45E-01 

log(β) -3.70E-03 -4.39E-03 -4.38E-03 -4.61E-03 -4.39E-03 -4.62E-03 

γr 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 

γrp 1.40E+00 1.49E+00 2.15E+00 2.85E+00 1.10E+00 2.63E+00 

γry 1.00E+00 8.06E-01 7.81E-01 9.05E-01 8.02E-01 9.05E-01 

γexp 6.82E-02 2.20E-01 6.25E-01 7.44E-01 4.67E-01 5.95E-01 

h 9.99E-01 8.67E-01 8.75E-01 9.93E-01 8.66E-01 9.93E-01 

η0,R 1.33E-02 1.39E-02 1.49E-02 1.67E-02 1.64E-02 1.67E-02 

η0,trY 3.80E-03 2.74E-03 4.82E-03 4.98E-03 4.88E-03 5.21E-03 

Tax 4.00E-01 2.90E-01 2.95E-01 4.08E-01 2.93E-01 4.08E-01 

θC 1.20E+01 1.05E+01 1.05E+01 1.20E+01 1.08E+01 1.20E+01 

 

The substantial differences in posterior modes across model versions stem from how 

seasonality affects misspecification. This aligns with [Sims (1993) and Hansen and Sargent (1993)]. 

Exogenous seasonal adjustment of q/q data introduces inconsistencies with microfoundations. The 

model compensates by altering estimates. In contrast, unobserved q/q lets the model infer 

seasonality endogenously. This uses measurement errors. It reduces distortions. Estimates then 

align better with structural equations. 

Consider habit persistence h. In AR1 without q/q, consumption series seem less persistent. 

Adding q/q makes them more persistent. This raises h (from 0.875 to 0.993). In AR0, other factors 

dominate. The model has few state variables. It overstates persistence to fit all data. Structural 

seasonality reproduces data with high persistence from habit. Adding q/q decreases flexibility of the 

model. It moves h to lower values.  

Next, look at γrp, the policy response to inflation. It rises with q/q in AR0 and AR1 (e.g., from 

1.40 to 1.49 in AR0, 2.15 to 2.85 in AR1). Observed inflation becomes less volatile in SA data. The 

Taylor rule needs a stronger response to explain interest rates. Relatedly, γexp increases. This shifts 

weight to shorter-term inflation expectations. Shorter-term inflation is more volatile. The model 

compensates for lower data volatility. It boosts sensitivity and volatility via expectations. 

For capital share αK, it falls with q/q in AR0 and AR1 (e.g., from 0.593 to 0.483 in AR0, 0.490 

to 0.445 in AR1). Lower αK strengthens labor-output links. Labor demand becomes more elastic to 

output. This enhances firm-household interactions. It alters the marginal cost gap-output relation. In 

turn, this affects output-inflation via the New Keynesian Phillips curve. While this logic may be 

tentative, it highlights seasonality's role in propagation mechanisms. 

Other parameters like tax follow similar patterns. This may offset fiscal distortions from SA. 

Changes seem chaotic due to parameter interdependence. Yet, the pattern shows reduced 



STRUCTURAL SEASONALITY JANUARY 2026 9 
 

misspecification in structural versions. Unobserved q/q yields more consistent estimates. This 

improves forecasting (Table 2). It also produces distinct seasonal patterns (Figures 1–2). Extended 

parameter reports confirm this. They do not change main conclusions. Instead, they stress 

seasonality's impact on DSGE inference. 

2.2 Seasonal adjustment 

The model with unobserved q/q growth rates produces corresponding smoothed time series 

that means expectation of q/q growth rate conditional on all dataset (including y/y growth rate). It is 

presented at figures 1. Figure 1 shows that the DSGE-implied seasonally adjusted data differ 

substantially from conventional seasonally adjusted data. The resulting time series exhibit clear 

seasonal patterns. In addition, there is large difference between seasonally adjusted for different 

versions of model. 

Figure 1. Different structured seasonality 

 
The model with ARSA shocks has seasonal shocks. It means that seasonally adjusted series 

are received after elimination effects of seasonal shocks and initial state (see fig.2). It is interesting 

that model with unobserved q/q growth rates produces larger inflation for few years. It is related to 

equation (5) that suggests zero mean for seasonal factor. Zero mean and persistent exogenous 

process may deviate from zero for a long period. Nevertheless, model with seasonality  
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Figure 2. Modeled structured seasonality 

 

2.3 Forecasting 

We have seen that DSGE based seasonal adjustment is different from conventional one and 

it has a huge influence on parameters estimation. We next compare in-sample forecasting 

performance to assess which specification performs better. Table 2 demonstrates forecasting quality 

of model with and without q/q growth rate. There is huge improvement in terms of RMSE if q/q growth 

rates are unobserved. Improvement is concentrated in a few variables (mainly output or inflation and 

interest rates). It is related to different forecasting horizons (except the longest one). Each model 

version exhibits improvements. It means the following: if model chooses the seasonal adjustment 

than misspecification becames smaller.  

Using seasonally adjusted data distorts the model’s microeconomic foundations. It is the first 

type of misspecification. If nature of seasonality is described than it is imperfect. It is second type of 

misspecification. And there are other misspecifications. The second type of misspecification is 

usually larger than the first one [Sims (1993) and Hansen and Sargent (1993)]. However, if we try to 

minimize “variance of misspecification” for each type of misspecification it would not lead to 

minimization of “variance of misspecification” for all types together. If the model chooses seasonality, 

then it is able to “transfer” part of the third type of misspecification to the seasonality. This mechanism 

appears to be the main source of the substantial forecasting gains observed in the AR0 and AR1 

specifications. 
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The model with ARSA shocks demonstrates the same improvement if q/q data is unobserved. 

It means that seasonality is not well described by seasonal-shocks in the model. So, it is hard for 

model to reproduce nsa q/q data. However, if the model chooses seasonality (only y/y data is 

observed) than model describes data much better. 

Table 2 log(RMSE/RMSEqq) 

  1 2 4 6 12 

ARSA 

inflation y/y -11.27% -34.84% -62.34% -50.56% 26.76% 

GDP growth y/y -35.29% -12.30% -6.00% -1.61% 0.44% 

Growth of nominal 

exch. 0.46% -5.45% -10.67% -4.47% -0.88% 

Growth of real exch. 1.02% 1.44% 0.70% -0.03% 1.12% 

Interest rate -8.54% -9.59% -6.59% -3.29% 0.11% 

AR1 

inflation y/y 9.60% -13.31% -45.98% -38.18% -3.90% 

GDP growth y/y -22.89% -7.87% -23.78% -3.26% 0.35% 

Growth of nominal 

exch. 0.76% -2.15% -8.24% -3.09% -0.56% 

Growth of real exch. 1.23% 1.77% 0.06% -0.23% 0.06% 

Interest rate -11.42% -12.99% -8.96% -4.48% 0.04% 

AR0 

inflation y/y -3.07% 0.97% -3.46% 2.94% -4.65% 

GDP growth y/y -24.75% -28.50% -23.79% -35.40% -4.56% 

Growth of nominal 

exch. -1.99% -3.32% -4.46% -0.85% -0.44% 

Growth of real exch. -0.47% -3.97% -1.74% -0.90% 0.01% 

Interest rate -20.24% -14.84% -5.86% -1.62% 0.03% 

The density forecast3 improvement is related to all horizons (see Table 3). This indicates that 

the gains extend beyond point forecasts. Structural seasonal adjustment yields more accurate 

density forecasts. It allows to have large improvement in LPS for large horizons despite small 

improvement in point forecasts for 12 quarters case.  

Table 3 LPS-LPSqq 

  1 2 4 6 12 

ARSA 

inflation y/y 0.08 0.37 0.78 0.59 -0.02 

GDP growth y/y 0.31 0.20 0.19 0.20 0.21 

Growth of nominal 

exch. -0.01 0.04 0.08 0.02 -0.02 

Growth of real exch. -0.02 -0.02 -0.02 -0.01 -0.02 

Interest rate 0.17 0.38 0.82 1.13 1.18 

5var 0.32 0.40 1.06 1.37 1.37 

AR1 

inflation y/y -0.10 0.15 0.61 0.48 0.20 

GDP growth y/y 0.16 0.09 0.20 0.13 0.17 

Growth of nominal 

exch. -0.03 -0.01 0.02 -0.01 -0.03 

Growth of real exch. -0.03 -0.04 -0.03 -0.03 -0.03 

Interest rate 0.11 0.16 0.22 0.23 0.14 

5var 0.57 0.29 0.62 0.79 0.61 

                                                        
3The log predictive score is used as a measure of density forecast accuracy. It is the average of the log 
predictive density evaluated at the actual observed data points. 
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AR0 

inflation y/y 0.04 0.00 0.04 -0.01 0.05 

GDP growth y/y 0.27 0.29 0.29 0.30 0.31 

Growth of nominal 

exch. 0.03 0.05 0.05 0.05 0.05 

Growth of real exch. 0.02 0.03 0.04 0.04 0.04 

Interest rate 0.20 0.17 0.04 -0.08 -0.14 

5var 0.80 0.56 0.66 0.57 0.41 

 

It should be noted that all tests are conducted with a simple model over a long sample period 

that includes the 2008–2009 crisis. This is an unfavorable situation that leads to relatively poor 

quality of forecasting for all versions of model. The relative RMSE is presented at table 4. All numbers 

are for versions with unobserved q/q data. The performance of the AR1 and ARSA versions is very 

similar. 

Table 4 (RMSE/RMSE-AR) 

  1 2 4 6 12 

ARSA 

inflation y/y 123.66% 134.05% 148.90% 153.37% 149.31% 

GDP growth y/y 104.70% 106.01% 96.52% 106.10% 95.43% 

Growth of nominal 

exch. 113.64% 103.07% 101.16% 101.54% 100.17% 

Growth of real exch. 106.27% 98.57% 98.43% 99.98% 100.18% 

Interest rate 87.60% 102.49% 111.80% 104.95% 83.41% 

Mean 107.18% 108.84% 111.36% 113.19% 105.70% 

AR1 

inflation y/y 129.80% 147.11% 160.66% 162.79% 109.42% 

GDP growth y/y 90.70% 99.92% 95.02% 108.25% 95.10% 

Growth of nominal 

exch. 114.58% 103.02% 100.20% 101.78% 100.57% 

Growth of real exch. 109.89% 102.52% 98.67% 99.88% 100.43% 

Interest rate 85.30% 99.30% 109.33% 103.76% 83.35% 

Mean 106.05% 110.38% 112.78% 115.29% 97.78% 

AR0 

inflation y/y 237.53% 175.30% 192.09% 162.74% 98.53% 

GDP growth y/y 1524.32% 865.74% 639.78% 133.86% 100.66% 

Growth of nominal 

exch. 278.43% 116.85% 102.96% 102.44% 100.57% 

Growth of real exch. 331.05% 126.68% 98.62% 100.43% 100.38% 

Interest rate 147.22% 155.37% 136.67% 113.71% 83.48% 

Mean 503.71% 287.99% 234.02% 122.64% 96.72% 

3. ROBUSTNESS RESULTS 

3.1 Simulated data 

One type of robustness check is usage of simulated data with seasonal component similar 

to [Saijo (2013)]. The ARSA version of model (estimated with q/q NSA data) is used for simulation. 

The length of time-series is the same (88 quarters). The seasonally adjusted data is generated too. 

Perfect seasonally adjusted is achieved by setting seasonal shocks equal to 0. All models are 
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estimated on simulated data. Its forecasts are computed. It is repeated 100 times. Corresponding 

out of sample RMSE are presented at table 5. 

Table 5 log(RMSE/RMSEqq) simulated data 

  1 2 4 6 12 

ARSA 

inflation y/y -120.10% -60.57% 11.51% 18.75% 15.15% 

GDP growth y/y -5.15% 3.73% -7.25% -3.41% -0.51% 

Growth of nominal 

exch. 4.92% 0.83% 1.29% -2.03% -2.09% 

Growth of real exch. -0.82% 0.44% -0.69% -1.74% -3.27% 

Interest rate 1.26% 2.74% 1.65% -0.52% 0.13% 

AR1 

inflation y/y -120.17% -63.18% 3.36% 4.19% 0.79% 

GDP growth y/y 31.26% 29.63% 9.44% 2.43% 0.22% 

Growth of nominal 

exch. 2.89% 2.31% -1.78% -8.81% -5.64% 

Growth of real exch. 2.19% 1.27% 0.17% -2.72% -0.60% 

Interest rate 3.03% 4.68% 2.54% -0.55% 0.05% 

AR0 

inflation y/y -88.88% -54.83% -0.31% 5.67% 4.11% 

GDP growth y/y -32.32% -22.54% -24.65% -19.73% -1.08% 

Growth of nominal 

exch. -3.42% 3.21% 3.50% -0.84% -3.39% 

Growth of real exch. -7.64% 9.21% -0.08% -0.24% 0.00% 

Interest rate -5.35% -2.96% -0.90% -0.63% 0.06% 

 

The simulated data demonstrates even larger improvement for short run forecasting. It 

means that usage of q/q growth rates in addition to y/y greatly decrease fit of the model. Moreover, 

adding q/q NSA growth rates to the ARSA specification reduces short-run forecasting accuracy. 

Thus, additional information from q/q data is almost useless. There is some improvement in long-

term forecasting ability of model with NSA data which may be related to more accurate estimation 

of parameters (in absence of misspecification). 

The models are misspecified. There is influence of prior for estimation results. It means that 

estimated values of parameters may be biased estimator of parameters that was used for simulation. 

However, data is generated from the same distribution. It means that estimated values of parameters 

(for each version of the model) should have the same distribution. So, standard deviation of these 

estimators can be computed over 100 tries. Corresponding results presented at Table 6. 

Table 6 Std modes for some parameters in different version 

Parameter AR0 

AR0 with 

q/q AR1 

AR1 with 

q/q ARSA 

ARSA with 

q/q 

αK 5.67E-04 2.10E-05 2.06E-04 2.07E-06 5.05E-07 8.03E-07 

log(β) 1.23E-04 1.63E-05 1.04E-04 1.88E-06 5.50E-06 2.76E-07 

γr 1.16E-02 2.14E-05 3.62E-04 2.54E-06 3.70E-06 4.39E-07 

γrp 5.61E-02 1.95E-05 1.96E-04 1.91E-06 4.17E-06 1.08E-06 

γry 6.23E-03 1.47E-05 4.32E-04 2.71E-06 2.32E-06 1.21E-06 

γexp 1.69E-03 1.52E-05 1.97E-04 2.41E-06 6.60E-08 1.84E-07 

h 4.01E-10 1.92E-05 2.28E-04 4.41E-06 1.09E-06 5.80E-07 

η0,R 2.63E-03 1.99E-05 2.57E-04 4.91E-06 8.37E-07 2.97E-07 

η0,trY 2.00E-03 2.10E-05 1.45E-04 3.03E-06 2.35E-06 6.57E-07 
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Tax 1.62E-03 1.16E-05 3.00E-04 2.53E-06 7.36E-07 1.06E-06 

θC 1.52E-01 1.99E-05 2.18E-04 3.80E-06 2.21E-06 8.12E-07 

 

It is interesting that in contrast to [Saijo (2013)] standard deviation of model without SA data 

is larger. Thus, structural seasonal adjustment leads to less accurate estimation of parameters. It is 

related to different approach for seasonality. Suggested approach gives to the model ability to 

choose seasonality without data about actual NSA q/q growth rates. Thus, suggested approach has 

not additional information that may improve accuracy of estimation in contrast to [Saijo (2013)].  

3.2 Russian data 

The additional check is usage of data from other country. The model would be estimated on 

dataset for Russia from 2015q1 till 2024q4. GDP log-growth rate y/y NSA and personal consumption 

expenditure deflator y/y NSA are used. Growth rates of BIS nominal and real exchange rates 

average in quarter (q/q). And RUONIA is used as interest rate. All exercises are the same as for 

USA. SA data are constructed with tramo-seats [Gomez and Maravall (1996)]. 

Seasonal effects are larger for Russian data. Variance of SA q/q growth rates is only 3.5% 

of NSA q/q growth rates for GDP (58.25% for PCE inflation). Difference of y/y growth rates for SA 

and NSA data is similar: 0.44% for GDP and 0.55% for PCE inflation. The improvement of forecasting 

quality due to usage of structural seasonality approach is even larger for Russian data (see table 7). 

It is interesting that interest rate became variable with large improvement for each version of model. 

Table 7 log(RMSE/RMSEqq) with Russian data 

  1 2 4 6 12 

ARSA 

inflation y/y 1.3% 1.3% 0.4% -0.1% -0.2% 

GDP growth y/y 0.0% 0.0% 0.0% 0.0% 0.0% 

Growth of nominal 

exch. 0.0% 0.0% 0.0% 0.1% 0.1% 

Growth of real exch. 12.0% 8.0% 0.6% -0.8% -0.1% 

Interest rate -34.7% -34.7% -34.7% -34.7% -34.7% 

AR1 

inflation y/y -29.1% -11.9% -6.9% 3.0% -6.0% 

GDP growth y/y -21.7% -23.2% -25.6% -6.3% 0.6% 

Growth of nominal 

exch. -3.9% -5.7% -1.8% -1.2% -1.1% 

Growth of real exch. -7.1% -6.5% -0.7% -0.4% -0.5% 

Interest rate -21.5% -39.5% -35.2% -30.9% -2.6% 

AR0 

inflation y/y -82.0% -24.4% -12.6% -10.0% -6.1% 

GDP growth y/y -17.9% -2.0% -9.8% -6.5% -1.3% 

Growth of nominal 

exch. -0.4% -0.3% -6.6% -3.7% 3.1% 

Growth of real exch. -1.6% -1.9% -5.7% -4.0% -0.3% 

Interest rate -44.4% -16.4% -14.9% -7.8% -5.4% 
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DISCUSSION 

The conventional seasonal adjustment leads to over smoothing of sa-series (compare to 

structural one). It is in line with literature that talks about over smoothing of seasonal adjustment 

[Hayat and Bhatti (2013)]. However, the structural seasonality approach leads to few deep changes. 

First of all seasonality became model specific property instead of data specific. It increases 

difference between DSGE models and conventional econometric approaches. Implementing 

structural seasonality is challenging in models that lack a state-space representation. The 

comparison of forecast for seasonally adjusted data becomes almost non-informative. Thus, all 

results and forecasts should be expressed in y/y terms, which differs from conventional practice. It 

is not complicated but requires changes of many routines. 

Many routines include important intermediate steps that are important even for policy 

implication. The identification of the output gap or recession episodes provides examples of such 

intermediate steps. Their meaning would be changed with model specific seasonality. However, final 

decisions are based on forecasts. Monetary policy according to Taylor rule is good example. The 

policy interest rate is determined by expected inflation and its own lag. The rule with output gap can 

be implemented too. The forecasting quality for interest rates improves with structural seasonality. 

However, intermediate step analysis (output-gap trajectory) became less informative. It stimulates 

to re-investigate some variations of intermediate steps that became conventional. For example, 

expected growth can be tried as alternative to output gap at Taylor-type rules. In case of optimal 

policy, existence of observed interest rates allows to receive policy recommendations with the 

structural seasonality too. 

Thus, switching from conventional seasonality to structural one would lead to few changes: 

 Keeping microeconomic foundation 

 Improving models fit and forecasts 

 Losing of comparability of conventional intermediate step of analysis and decision 

making process. 

 Keeping of comparability of conventional final step of analysis and decision making 

process. 

 Request for re-investigation of the best practice 
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CONCLUSIONS 

This paper revisits the conventional reliance on seasonally adjusted data in DSGE 

estimation. While convenient, such pre-filtering imposes unrealistic restrictions across variables and 

breaks the model’s microeconomic foundations. The theoretical examples of the Euler equation and 

the Cobb–Douglas production function illustrate that equivalence with seasonally adjusted 

specifications holds only under highly implausible conditions. Empirically, the distortions are 

substantial: for U.S. GDP, the variance of q/q growth rates falls to 61.9% after seasonal adjustment 

(80% for PCE inflation), and the average difference between SA and NSA y/y growth rates is 0.4% 

(RMSE). Seasonal adjustment therefore removes a nontrivial share of the very variability that DSGE 

models are designed to capture. 

As an alternative, I propose to use y/y growth rates as observables, leaving q/q seasonal 

fluctuations to be chosen by the model itself. This approach makes the seasonal adjustment to 

become model-specific rather than imposed exogenously, thereby maintaining the model’s 

microeconomic foundations. The empirical exercises on U.S. and Russian data demonstrate that 

structural seasonality improves forecasting performance, for point forecasts as well as density 

forecasts. 

The implications are twofold. On the one hand, adopting structural seasonality strengthens 

internal consistency and reduces overall misspecification (by creation of “negative correlation” 

between misspecification of model and seasonal adjustment), leading to more reliable forecasts. On 

the other hand, it challenges conventional intermediate steps of applied analysis: concepts such as 

the output gap or recession dating are less directly comparable across models once seasonality is 

determined endogenously. Nevertheless, policy-relevant variables such as interest-rate forecasts 

benefit directly from the improved fit. 

Overall, the evidence suggests that conventional seasonal adjustment is not an innocuous 

preprocessing step. Allowing models to determine their own seasonal adjustment keeps their 

theoretical structure intact and can materially improve empirical performance. Future work should 

further explore how model-specific seasonality interacts with policy rules and structural shocks, and 

whether it can provide a new benchmark for empirical DSGE practice. 
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APPENDIX DSGE MODEL 

This model is simple small-scale DSGE model of closed economy. Model includes 3 types of 

agents: households, firms and government.  

Households 
Households maximize expected utility function (A1) with budget restriction (A2). 
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 ttWHttHttttWtWHtttHttt TBFXBMLWRBFXRBMCP   1,1,1,,, )1(//   (A2) 

Ct is consumption, Ch,t is habit (that is equal to consumption but it is not controlled by 

individual households), Lt is labor, Mt is money, Wt is wage, Rt is interest rate in domestic currency, 

BH,t is bond/deposit savings in domestic currency, BWH,t is bond/deposit savings in foreign currency, 

RW,t is interest rate in foreign currency, FXt is exchange rate (units of domestic currency per unit of 

foreign), Tt is transfers from government, ZtrY,t is exogenous process of TFP growth, ZC,t is exogenous 

demand shock process. The formula (1) uses alternative form of habit. Conventional habit with minus 

(instead of dividing) leads to possibility of complex values of utility function with normal distribution 

of variables. Dividing (that makes first summand equal to exp(zc,t+(1-ωc)(ct-ch,t-1h))/(1-ωc)) has not 

such disadvantage and produce similar dependence on lag of consumption. 

This model uses an unconventional form of habit. This is done to prevent theoretical 

possibility of complex numbers (situation when current consumption is below habit related level). 

Such situation could happen with near-zero probability (taking into account approximation errors). 

Suggested approach produces similar effects to conventional one: dependence on previous period 

consumption and higher nonlinear effects (but this effect may be much smaller). 

Additional detail is existence of stochastic trend with drift in all real variables. It comes from 

exogenous unit root TFP process. All summands of utility function should be cointegrated. So, it is 

impossible to have Ct without dividing by ZtrY,t. Dropping the stochastic trend from the model is poor 

practice (it would eliminate microeconomic foundation that is one of the main advantages of DSGE 

models).  

Firms 
Firms have monopolistic competition and solve problem (A3)-(A6). They maximize expected 

discounted dividends flow with price rigidity effect in Rotemberg form (A3). The restrictions are 

following: budget (A4), production function (A5) and demand (A6) that comes from CES-aggregation. 
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Df,t – is dividends of firm f, Lf,t is amount of labor used by firm f, Pf,t is price of goods by firm f, 

Yf,t is output of firm f, Tw,t – is transfer with foreign part of the firm, PF,t is price level of domestic firm, 

YD,t is demand for domestic firms output, ZY,t is exogenous stationary TFP process, Zθ,t is exogenous 

process of demand elasticity. 

There are two important details related to problem of firms. The first is discounting factor. The 

conventional is usage of stochastic-discount factor that is based on household’s Lagrange multiplier 

of budget restriction. It is equivalent in case of linear approximation and model without financial 

rigidities. However, it creates problems for generalization of model: whose Lagrange multiplier 

should be used if heterogeneous agents owns firm. Moreover, firms may be owned by foreign agents 

or government. The usage of interest rate eliminates these problems. The second detail is 

Rotemberg rigidity. Many authors use real costs of price change. It produces additional summand in 

GDP formula that have not analog in national account system. The usage of moral costs solves such 

problem. These two approaches are equivalent in case of first order approximation. 

Government 
Government has budget restriction (A7). Monetary policy rule of Taylor type is (A9) and rule 

for transfers (A8). There are definitions of two variables that are used in the rules. The first is future 

inflation pEXP,t that is described by rule (A10). This is done for possibility to control which inflation is 

more important factor for Taylor rule (next period or future one). The next variable is households 

domestic currency assets AH,t that is described by (A11). It is liabilities of government (minus assets) 

that effect on its fiscal policy. Such variable allows to decrease number of state variable. 

 )(/11 ttttttttt LWRBMMDTB    (A7) 

 ))()()(1()/()/( ,,,1,11, ttrHtHtrADtDtrytrttrYtttrttrYtt zaayyZPTZPT     (A8) 
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Small letters are for stationary variables. The transformation depends on variable: real 

variables (such as yD,t) are logs of ratio initial variable to common trend (ZtrY,t); nominal variables are 

divided to price level and common trend as at (A11); interest rates (Rt, RW,t) that is stationary positive 

variable are transformed by logs; real exchange rate (fxt) is log based on ratio of domestic and foreign 

price levels and so on. 

Rule (A8) reflects 3 ideas of fiscal policy. The first one is smoothing that means slowly 

changes of government transfers (it is controlled by γtr). The second one is cyclical dependence. 

Fiscal policy could be pro- or counter-cyclical depending on sign of γtry. The third idea is budget 

balancing. Higher level of government debts (that is assets of households counting money as part 

of government debts) should leads to lower government transfers. Negative value of γtrA reflects this 

mechanics of government assets control. However, there is question how close to zero it can be 

without explosiveness. Blanchard-Kahn condition is the main restriction for non-explosive trajectory 

of all variables including government assets. 
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Rest of the world 
The rest of the world has its budget restriction that is usually calls balance of payments (A12). 

 timttWtWHttWttttWH PIMRBFXTPEXFXB ,,,,1, /   (A12) 

The rest of the world is described by exogenous rules. Its inflation described by (A13). Interest 

rate (for households) is described by (A14). It includes some dependence on foreign bonds position 

of households. If they try to increase their foreign debts than interest rate would increase. Import 

prices are described by (A15). If coefficient is equal to one it would means that exogenous prices for 

import is in foreign currency. However, coefficient can be different that means some mechanics 

restriction exchange rate pass through import prices. Equation (A16) describes export that depends 

on real exchange rate. It is suggested that export goods and domestic consumption are the same 

(so, their prices are the same too). Equation (A17) comes from CES aggregation of import and 

domestic goods to final one. 

 tpwtW zp ,,   (A13) 
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   textfxext zfxfxex ,,    (A16) 
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Balance 
There are balance equations. The first of them (A18) describes conventional GDP. The next 

one (A19) describes demand for intermediate goods that come from the same CES aggregation as 

import. The price aggregation (A20) describes dependence between domestic firms prices (pF,t), 

import prices (pim,t) and aggregate price level (Pt). It comes from the same CES aggregation. The 

last equation (A21) describes denomination of domestic currency units. The price of final goods 

basket in term of domestic goods basket is fixed. 
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 ctc pp ,  (A21) 

The model includes only one source of domestic demand for simplicity. Introduction of 

investments and government consumption (44% and 35% of consumption at 2019) makes model 

much more complicated (additional state variable of capital, investment rigidity, increasing 

importance of financial rigidity, different deflators for different GDP components and so on). 

Introduction of government consumption only (without investments) creates additional problems of 

dividing DGP by 2 components of domestic demand. Thus, single source of domestic demand is 

significant simplification of the model that allows deep focusing on monetary policy. 

Priors for estimation presented at table A1. All computations are made with modified dynare 

[Adjemian et all (2011).]. 

Table A1 Priors 

Parameter 
Lower 

bound 

Upper 

bound 
Density 

Prior 

mean 
Prior std 

Model 

version 

stderr εC 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 
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stderr εex 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εpim 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εpw 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εR 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εrw 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εθF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εtr 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εtrW 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εtrY 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εYF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

All 

stderr εC,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εex,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εpim,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εpw,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εR,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εrw,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εθF,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εtr,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εtrW,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εtrY,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr εYF,SF 0.0003 10 

 

inv_gamma_pdf 0.01 3 

ARSA 

stderr 

zzobsdPyy 10-9 6*10-4 

 

inv_gamma_pdf 0.001 0.3 

All 

stderr 

zzobsdPyy 10-9 4*10-3 

 

inv_gamma_pdf 0.001 0.3 

All 
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αK 0.3 0.8 normal_pdf 0.6 0.05 All 

ln(β) -0.01 -1.00E-05 normal_pdf 0.005 5.00E-03 All 

φP -5 5 normal_pdf 0 10 All 

γexp 0.001 0.999 normal_pdf 0.5 0.25 All 

γr 0.6 0.999 normal_pdf 0.8 0.15 All 

γrp 1 5 normal_pdf 1.5 0.5 All 

γry -1 1 normal_pdf 0 0.15 All 

γtr 0.6 0.999 normal_pdf 0.8 0.15 All 

γtrA -1 0 normal_pdf -0.1 0.15 All 

γtry -1 1 normal_pdf 0 0.15 All 

γexfx 0 5 normal_pdf 0 1.5 All 

γpimfx 0 2 normal_pdf 1 0.5 All 

γrwbw -5 0 normal_pdf 0 0.5 All 

h 0 0.999 normal_pdf 0.7 0.15 All 

μL -5 5 normal_pdf 0 10 All 

μM -5 5 normal_pdf 0 10 All 

η0,C -5 5 normal_pdf 0 2 All 

η0,ex -5 5 normal_pdf 0 2 All 

η0,pim -5 5 normal_pdf 0 2 All 

η0,pw 0 0.02 normal_pdf 0.005 0.005 All 

η0,R 0.001 0.03 normal_pdf 0.0015 0.005 All 

η0,θ,F 4 12 normal_pdf 8 2 All 

η0,tr -5 5 normal_pdf 0 10 All 

η0,trW -5 5 normal_pdf 0 2 All 

η0,trY -0.01 0.02 normal_pdf 0.01 0.01 All 

η0,YF -10 10 normal_pdf 0 10 All 

η1,C -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,ex -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,pim -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,pw -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,R -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,rw -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,θ,F -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,tr -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,trW -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,trY -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η1,YF -0.999 0.999 normal_pdf 0.5 0.1 AR1,ARSA 

η4,C -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,ex -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,pim -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,pw -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,R -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,rw -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,θ,F -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,tr -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,trW -0.999 0.999 normal_pdf 0.95 0.01 ARSA 
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η4,trY -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

η4,YF -0.999 0.999 normal_pdf 0.95 0.01 ARSA 

ωC 1 5 normal_pdf 1.5 1.50E-01 All 

ωL 1 5 normal_pdf 1.5 1.50E-01 All 

ωM 1 5 normal_pdf 1.5 1.50E-01 All 

Τ 0 0.8 normal_pdf 0.4 5.00E-02 All 

θc 4 12 normal_pdf 8 2 All 

wc 0.4 0.9 normal_pdf 0.7 0.1 All 

steady(bWH) -5 5 normal_pdf 0 2 All 

Steady(cH) -5 5 normal_pdf 0 1 All 

 


