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Abstract 

 

We propose an algorithm for solving DSGE models with stochastic trends. Several implementations help us to solve the 

model with a small number of stochastic trends in the absence of a balanced growth path fast and allow us to control the 

accuracy of approximation in a certain range. Taking into account the fact that many implementations can be easily 

parallelized, this algorithm enables the estimation of models in the absence of a balanced growth path. We also provide a 

number of possible methods for estimation. 
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1. INTRODUCTION  

 

Over the past decade, DSGE models have gained popularity among macroeconomists. In the 

presence of theoretical interpretation, they can be fitted to data and used, for example, for 

forecasting or analysing optimal policy rules. To work with the model and fit it to data, it is 

necessary to solve the model, and there is a vast literature focusing on the solution and estimation 

of DSGE models (see, for instance, the review by Fernandez-Villaverde et al. (2016)). However, 

fewer papers consider non-stationary models, while part of the observed data is non-stationary in 

nature (GDP, investment, consumption, etc.). Models that can be reduced by transforming the 

variables into stationary ones (for example Fernandez-Villaverde and Rubio-Ramirez (2007)) are 

standard, but such a class leaves out many interesting models. Models in which the dynamics of 

trends is predetermined (and/or expectations about the dynamics of these trends are formed) have 

also been developed. Such models are usually solved using backward recursion, such as that of 

Kulish and Pagan (2014). 

Sometimes, to fit the model to data, trends are removed using other models or various filters. 

However, such an approach can lead to biased estimates of model parameters.
1
 Furthermore, 

Canova (2014) describes the hybrid approach in which the trend and the cycle are modelled 

separately. Such a method can lead to the loss of theoretical interpretation of trends and their 

inconsistency with microfounded models. 

A number of algorithms have been proposed for a model with stochastic trends (unit root 

processes). The perturbation algorithm based on Taylor expansion around any point is discussed by 

Kim et al. (2008) and Lan and Meyer-Gohde (2014). In Evans and Phillips (2015) the algorithm of 

linearization about the current state is offered. The algorithm is applicable to simulations, and it is 

difficult to use this algorithm for estimation because of its computational complexity. 

In this work we introduce an algorithm for the solution of models with stochastic trends, which, 

like the algorithms of Kim et al. (2008), Lan and Meyer-Gohde (2014) and Evans and Phillips 

(2015), does not assume the existence of a balanced growth path. We generalize the algorithms of 

Kim et al. (2008) and Lan and Meyer-Gohde (2014) and add elements of linearization about the 

current state. The described algorithm consists of two steps. The dependence between a steady state 

and stochastic trends is approximated in the first step. In the second step, the deviation from a 

steady state is approximated. This deviation depends on the point at which the approximation is 

made. 

                                                      
1
 See Gorodnichenko and Ng (2010). 
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For each of the two steps, we present several possible implementations, all of which do not 

depend on shock realization (the solution does not depend on the trajectory by which the system 

reached the current point). The trend part is approximated by the grid search, the solution in a finite 

number of points, the linear approximation, Smolyak’s algorithm and the grid search using 

differential equations. For the approximation of the cyclical part, we use the same algorithms, 

except for the grid search using differential equations, and we add constant approximation. 

Despite the fact that, in a number of implementations, this algorithm is more computationally 

difficult than the algorithms of Kim et al. (2008) and Lan and Meyer-Gohde (2014), it allows us to 

model the non-linear dependences, which are a consequence of the change in the stochastic trends. 

The running time of the majority of these implementations is acceptable for the estimation of 

models with a small number of trends. In addition, most of the procedures proposed here can easily 

be parallelized, significantly reducing the time of the algorithm. 

This algorithm can be applied, for example, to models in which the technology is a process 

with a unit root and the utility function is not logarithmic (as an alternative to adding trends directly 

to a utility function; see, for instance, Aruoba et al. (2016)), for models of oil-exporting countries, 

where the real oil price follows a random walk, or for models of small open economies, where the 

domestic and foreign technologies follow various stochastic trends.  

The rest of the paper is organized as follows. Section 2 describes the two-step algorithm. 

Section 3 discusses the estimation procedures. Various implementations and results are presented 

in Section 4. Section 5 concludes. 

 

2. SOLUTION ALGORITHM 

 

We analyse a system of equilibrium conditions of the following form: 

       (                                    )   (     )    (1) 

The last    equations are: 

                             (2) 

where    is an      vector of stochastic trends,    is an      vector of endogenous and 

exogenous variables except for trends,     is an       vector of trend shocks and    is an      

vector of other shocks. We assume that    and    are i.i.d. with a finite diagonal covariance matrix. 

 We also assume continuous differentiability of  , full rank of   
    

    
  and the 

existence of the unique and bounded steady state    (  ) for each    in the area of interest: 

     
(                         )            (3) 
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 Our approximation algorithm is an adaptation of the perturbation methods described by 

Kim et al. (2008) and Lan and Meyer-Gohde (2014). The authors also discuss the motivation for 

the approximation of non-stationary models and fitting models to data. We will try to find the 

solution of the form
2
: 

          (             )     (4) 

The approximation algorithm can be divided into two steps. In the first system (3) is solved 

for various values of   . The second step involves the approximation about trends and adjustment 

to trend changes. 

 

Step 1 

 

This is a standard procedure to solve system (3) for a fixed value of   . In the presence of a 

balanced growth path, a change of variable  ̂  
  

 (  )
 (where  (  ) is a function depending on the 

values of the trends) transforms the system into stationary representation. If possible, we assume 

preliminary replacement for a subset of    (excluding    from the system) to accelerate our 

procedure.  

 After that, system (3) is solved for a fixed    or dependence between     and    is 

approximated by one of the methods described in Section 3. Thus, after this step there is a solution 

for some values of trends. Further, we will show that the methods of approximation offered in this 

paper require solution only in a number of points, which is proportional to the data length. 

 

Step 2 

 

In step 2 we linearize (1) except for (2) about    (  ) for some values of   . The 

approximation has the following form
3
: 

      (  )    
 (  )(        (  ))    

 (  )     
 (  )    (5) 

Adjusting to the change in    (  ) and denoting       (  ) by  ̂ , we have that: 

 ̂    
 (  )( ̂       (    )     (  ))    

 (  )     
 (  )   (6) 

and    (    )     (  ) is the output of the first step. 

 

 

                                                      
2
 For simplicity we assume that for each     in area of interest system (1) has  unique no bubble solution. 

For more details on non-unique solutions, see Lubik and Schorfheide (2003) and Ascari et al. (2016). 
3
 See Appendix A 
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3. SOME ESTIMATION ALGORITHMS 

 

The measurement equation can be expressed as: 

      
      (         )    (         )     

      (7) 

where   
    is a vector of observables,   (         ) and   (         )  are coefficients and 

  
    is a vector of measurement errors. 

System (6)-(7) can be estimated using particle filter for likelihood calculation. It is also easy 

to see that, for given values of the trend, the system is linear. Under the error normality assumption, 

for example, the system can be estimated using conditional particle filter.
4
 In fact, when the particle 

filter is applied, it is necessary to approximate the solution in NT points (where N is a number of 

particles and T is a number of observed periods) for likelihood calculation. In the case of Bayesian 

estimation, using estimates of the likelihood function and sampling techniques such as MH 

(Metropolis–Hastings) and SMC (Sequential Monte Carlo), it is possible to obtain the posterior 

distribution of the model parameters.
5,6,7

 When a maximum likelihood estimator is the goal, the 

problem with the dependence of likelihood approximation on random variables arises. To avoid 

this problem, the algorithm with continuous resampling of Malik and Pitt (2011) can be used.  

This paper is devoted to model solution, so we will not estimate models; however, we 

provide another sampling algorithm in addition to those described above. We hope that this 

algorithm will be useful for models with stochastic trends. 

1. Choose initial point     
  for model parameters and trends 

2. For        : 

2.a. For        : 

                                                      
4
 For more information about the particle filter and conditional particle filter, see, for instance, Doucet and 

Johansen (2011) and Herbst and Schorfheide (2015). 
5
 It should be noted that using estimates of the likelihood function instead of the true values can lead to 

sampling points that are not from the posterior distribution. The validity of MH and SMC algorithms is 
provided by Andrieu et al. (2010) and Chopin et al. (2012). 
6
 Another possible algorithm is IS with accurately constructed proposal density. For example, posterior of 

linear approximation can be used to construct proposal. Calculations related to nonlinear model can be 
done in parallel way. 
7
 A number of improvements to standard algorithms have been used for estimation and likelihood 

evaluation. IS
2
 algorithm for state space model estimation is proposed by Tran et al. (2016). In addition, the 

choice of the optimal number of particles for time reduction is discussed. Doucet et al. (2015) can be seen 
as an example of the papers devoted to the choice of the optimal number of particles in the context of 
PMMH. The addition of correlated states can also improve the properties of algorithms (see Dahlin et al. 
(2015) and Deligiannidis et al. (2016)). Algorithms like the auxiliary particle filter (Doucet and Johansen 
(2011)), tempered particle filter (Herbst and Schorfheide (2016)) under the condition that likelihood is 
unbiased and particle EIS (Scharth and Kohn (2016)) can be applied to reduce the likelihood estimation 
variability. To improve the proposal density properties, a number of techniques exist (see Giordani and Kohn 
(2010), Hoogerheide et al. (2012), Herbst and Schorfheide (2015)). There are also several extensions of the 
standard SMC (see Herbst and Schorfheide (2015)), for example SQMC (Gerber and Chopin (2014)). 
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Sample   
  from  (  

               ) using MH algorithm
8
 

2.b. Sample    from  (       
      ) using MH algorithm 

The remainder of the paper is devoted to the comparison of different solution algorithms. 

The key characteristics are speed and accuracy of solution approximation. 

Before we move on to the evaluation of the properties of algorithms, we note that, in the 

case of the observed trends, the likelihood function can be found exactly.
9
 In this case the 

likelihood function can be factorized as follows: 

 (      )   (    )∏ (           )

 

   

  (  
       ) (    )∏ (  

              ) (           )

 

   

 ( (  
   )∏ (  

          )

 

   

)( (  
       

 )∏ (  
            

   )

 

   

) 

The first multiplier reflects the likelihood of trends and can be calculated easily, taking into 

account the fact that the trends are observable. The second factor can easily be calculated using 

Kalman filter (under the assumption of normally distributed errors). 

 

4. ALGORITHM IMPLEMENTATIONS 

 

For the comparison of the algorithms, we will use the model described in appendix B. It is a 

modified model without the balanced growth path of Evans and Phillips (2015). We add an 

endowment good. The production of this good follows a random walk. The model calibration is 

provided in Table 1. 

 

4.1. Solution algorithms 

 

The implementation of the algorithm is divided into two parts: the approximation of the 

trend and the cyclical part. For the approximation of the trend part, the following algorithms will be 

used: the grid search, solution in a finite number of points, linear approximation, Smolyak’s 

algorithm and the grid search using differential equations.
10

 

                                                      
8
 Modification with additional state sampling can be used. 

9
 The model in which the price of oil follows a random walk is an example of such a type of model. 

10
 See Appendix C 
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The grid search is a basic algorithm, although the computing complexity of this algorithm 

grows exponentially with the number of trends. Smolyak’s algorithm works on a sparse grid and 

partially solves this problem, but its complexity also increases with the number of trends. Linear 

approximation and the solution in a finite number of points are more robust in this context. The 

first of these, however, can be inaccurate in problems with strong nonlinearities, and the 

complexity of the second grows with the number of approximation points (usually the number of 

approximation points is proportional to the number of observed periods). The algorithm using 

differential equations, in the form in which it is applied in this paper, suffers from “curse of 

dimensionality” too, but using this algorithm can lead to a considerable reduction in the number of 

numerical solutions of the steady-state system. 

For the approximation of the cyclical part, we use the same algorithms except for the grid 

search using differential equations, and we add constant approximation. 

 

4.1.1. Trend 

 

SMC and MH algorithms require a solution in the NT point to calculate the likelihood, and 

the proposed two-step algorithm requires a solution in 2T points for one iteration, so we compare 

the solution algorithms in a finite number of points with the others for NT and 2T points. 

We use MATLAB for the realization of the algorithms,
11

 and at the same time we do not 

use parallel programming for the algorithms that can be applied to the majority of them. For the 

solution in point, the fsolve
12

 function is used. We obtain an initial guess from the decision in the 

previous point, if it is possible. A more detailed implementation description can be found in 

appendix C. 

We use 99 points for the grid search with a step equal to the standard deviation of trend 

logarithms. As a result, we obtain a solution in [                     ]  [      

               ]. We use the same grid (99×99) for the approximation of trends in differential 

equations and a 9×9 grid with the same boundaries.
13

 The same area is used for Smolyak’s 

algorithm. For speed comparison in 2T points, we solve twice the model with T=100. 

We solve models following equations (B.7.ss)–(B.13.ss). Numerically we solve only 

equation (B.10.ss), so we compare the accuracy of this equation. Two measures of accuracy are 

                                                      
11

 We use a desktop PC with the following characteristics: Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz 
2.40 GHz and RAM 4 GB. 
12

 The accuracy is equal to     , which partially determines the accuracy of the algorithms that use this 
function. 
13

 We choose the bilinear function to interpolate the trends inside a rectangle. 
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used: the difference between the logarithm of the numerical solution and approximation; and the 

error in (B. 10.ss) divided by the sum of the modules of all the terms.
14

 For comparison, the values 

are calculated on a 999×999 grid. 

The results are presented in table 2. The grid search takes about 30 seconds and is the 

slowest algorithm (except for the approximation in a finite number of points for NT points), 

because it is necessary to solve equation (B.10.ss) many times. The running time of all the other 

algorithms is less than two seconds. The linear approximation with a numerical derivative solves 

equation (B.10.ss) three times; however, it can easily be modified to an algorithm with the use of 

differential equations (the tangent plane in the initial point) by finding the derivative analytically. 

The presented linear approximation takes from 0.02 to 0.11 sec depending on the number of 

points.
15

 The running time of the grid search using differential equations for 200 points is 0.01 sec 

for the 9×9 grid and 0.27 sec for the 99×99 grid. The same times for 100,000 points are 1.37 and 

1.62 sec. Approximation in a finite number of points also requires equation (B.10.ss) to be solved 

many times. For 200 points the solution takes 0.61 sec, and for 100,000 it takes 305 sec. Smolyak’s 

algorithm works in 0.11 and 1.29 sec for 200 and 100,000 points with 29 nodes. The same times 

for Smolyak’s algorithm with the use of 13(5) points are 0.05(0.02) and 1.2(1.15) sec. 

 It is natural that in most cases the price of speed is accuracy. The algorithm of 

approximation in a finite number of points is the most accurate. It differs from true because of 

numerical solver tolerance; therefore, we do not give the accuracy values of this algorithm. In a 

case in which the size of the grid exceeds the number of approximation points, the grid search is 

less precise but takes more time (as in an example with 200 points). The grid search is the second 

of the presented algorithms for accuracy. The maximal error of logarithm deviation from a steady 

state is about 0.0001. For the algorithm using differential equations on the same grid, the error is 

about 0.025, and for Smolyak’s algorithm with 29 points, it is 0.04. The other algorithms are less 

precise. At the same time, the average errors for the presented algorithms are more than a half-

order less. 

 

4.1.2. Cycle 

 

We use several modifications of standard linearization about the steady state described in 

appendix C. For linearization we use gensys described by Sims (2002). As well as for the 

approximation of a trend, the same grid is used. We do not demonstrate the accuracy of a cycle 

                                                      
14

 We will see later that the accuracy of (B.3.ss) depends on these errors. 
15

 0.01 in the case of an analytical derivative 
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because it is difficult to divide a cycle and a trend. Instead, we present the accuracy of the full 

solution for various combinations of trend and cycle approximations. 

The running times of various cycle approximations are presented in table 3.
16

 All the steady 

states presented in system (B.1.ss)‒(B.7.ss) are preliminarily computed.  

As well as for algorithms of trend approximation, the grid search takes the most time (9 and 

12 sec for 200 and 100,000 points). Approximation in a finite number of points for 100,000 points 

takes more time since the number of system (B.1.lin)‒(B.7.lin) solutions is far larger than that for 

the grid search algorithm. The running time is 0.19 sec for 200 points. Smolyak’s algorithm with 

the use of 5, 13 and 29 nodes for approximation in 200 points takes 0.006, 0.02 and 0.03 sec, 

respectively, and 0.5, 0.56 and 0.6 sec for 100,000. The running times of linear approximation are 

0.004 and 0.04 sec. 

 

4.1.3. Full solution 

 

We combine identical approximation algorithms of the cyclic and trend part to compare the 

accuracy of the full solution. Other combinations are also possible; however, we do not consider 

them in this work. For an accuracy comparison of the full solution, 1000 random points were 

generated for trend values in the area of interest. In addition, given that       and      , 100 

points were generated. In these 100,000 points, we estimate the accuracy of the algorithms, 

calculating the logarithm of unit-free error
17

 for (B.1)‒(B.6). We follow Tauchen (1986) in 

numerical integration. 

We run this procedure for two sets of parameters:         and     . In the first case, 

the influence of the cyclic shock is small relative to the trend shocks; in the second, it is 

dominating. 

The results are presented in table 4. It is simple to notice that equations (B.4)‒(B.6) are well 

approximated by all the algorithms. These equations hold for the approximation of trends ((B.9.ss), 

(B.11.ss) and (B.13.ss) set the equivalent system of equations) and for the approximation of a cycle 

((B.4.lin)‒(B.6.lin)). (B.3) has the same form, but its approximation is less precise. Such a situation 

arises due to the offered approximation method of system (B.1.ss)‒(B.6.ss). Let us denote the 

approximated solution for labour as   
    and rewrite equation (B.10.ss): 

   ( 
(  

   ) 

  
   )

 
 

 
   

   (    
   ) (

   

  
   )

 

   
   

     
           

                                                      
16

 The description can be found in appendix C. 
17

 We divide the error by the sum of absolute values of all the terms.  
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where     is an approximation error. Substitute (B. 8.ss) and (B. 12.ss): 

( 
(  

   ) 

  
   )

 
 
 

   
        

or 

 (  
   )     

   (  
       )    

 

Thus, the error of (B.3) depends on the error of (B.10.ss). It is easy to note that this error is 

weakly dependent on the standard deviation of the cyclical shock. For Smolyak’s algorithm and the 

linear approximation, the error in this equation is large enough; however, for algorithms using a 

grid, the accuracy increases with the addition of new nodes. That gives the ability to increase the 

accuracy by adding nodes.
18

 Equations (B.1)‒(B.2) after log-linearization are not equivalent to the 

initial. The errors in (B.1)‒(B.2) depend more on the dispersion of the cyclical shock. 

As well as for trends, the approximation of the full solution shows that the solution in a 

finite number of points is the most precise algorithm. The grid search is the second most accurate 

algorithm. Smolyak’s algorithm is less precise. The linear algorithm approximates poorly and 

cannot be used for the solution of the presented model. 

Finally, we test the algorithm of linearization about one point as in Kim et al. (2008). For 

this purpose we solve the system for trends in a point      ,      . Then, using system 

(B.1.dif)‒(B.6.dif), we find the tangent plane (in terms of logarithms) in this point. Adding the 

constant approximation of a cycle, we obtain the full solution. Unlike linear approximation, not 

only the labour equation but also all the other equations are approximated. Consequently, there is 

no problem in (B.3) described above. The largest error for this method appears in equation (B.1), 

which depends on steady-state values. The logarithm of the maximal error is equal to -0.34 and -

0.33 for         and     ,  respectively. The average errors are equal to -1.93 and -1.77.  The 

errors in the other equations are compatible, allowing the use of this method, in view of its 

simplicity and speed, when the fluctuations are small. 

 

4.2. Algorithm discussion 
 

4.2.1. Problems and limitations 

 

                                                      
18

 See the discussion of parallelization below. 
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As well as the majority of perturbation methods, the algorithm offered in this paper works 

well only for models without kinks. At the same time, if it is possible to speed up, it is better to 

remove trends that can be excluded from the system by a change of variables. In models with weak 

nonlinearities in trends, most of the implementations do not work much better than simple 

linearization. Before proceeding to the algorithms that take more time, it is probably worth trying 

to solve the model using the method of Kim et al. (2008) and looking at the arising nonlinearities. 

There are also a number of problems related to the identification, which may arise in the 

estimation step. Let us explain this with the model described in this paper. Suppose that we observe 

  ,    and   . Let      , then 
  

 

  
    

  

  
 . Bearing in mind that   

    
      , we obtain 

expressions for labour and wages. Adjusting    from equation   
   

         
   , we have full 

equivalence of parameters    and  . In models with a balanced growth path, such non-

identifiability may disappear as a result of scaling and log-linearization. A number of standard 

methods are available to avoid the problem of identification, which we do not discuss here. 

 

4.2.2. Increasing the speed and accuracy 

 

The implementation of the proposed two-step procedure can be improved in several ways, 

some of which we discuss in this section. 

Parallel computation (using CPU or GPU) can be applied to accelerate the majority of the 

offered implementations.
19

 Grid algorithms (grid search or sparse grid search) can easily be 

parallelized in nodes for calculation of the required function. Thus, the accuracy can be improved 

by increasing the number of nodes with a smaller loss of time. It is also necessary to take into 

account the time that we can benefit from parallelization and the time that we lose by using parallel 

computing. Parallelizing the algorithm of the solution in a finite number of points is more difficult. 

Using particle filters, we do not know in advance the points at which we need to make an 

approximation. We can use parallelization on particles. Applying the algorithm with alternate 

sampling trends and parameters, it is possible to use the prefetching MH algorithm
20

 (see. Strid 

(2009)) to step 2.a. Step 2.b. in this algorithm can be parallelized, since we know the values of the 

                                                      
19

 See Brumm and Scheidegger (2015) as an example of the use of parallel computing for solving DSGE 
models. 
20

 It can also be applied to MH step in algorithms with particle filters. 
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trends. In addition, MH with sampling of trends that does not depend on their values of trends in 

the current iteration in step 2.a can be used.
21

 It allows the solution to be found in advance. 

An increase in accuracy can be achieved by a higher approximation order. Quadratic 

approximation can be calculated easily in the presence of the linear
22

. The accuracy of the grid 

search can be improved by increasing the number of nodes. Furthermore, potentially, a different 

method of selecting grid points can help to increase the accuracy. Let us explain this using 

Smolyak’s algorithm with five points. Figure V1.a shows the nodal points. With such collocation, 

the greatest errors arise in the corners. When placing nodal points in corners, the errors decrease. 

 

5. CONCLUSION 
 

In this paper a two-step algorithm for solving DSGE models without a balanced growth 

path was presented. A number of proposed implementations allow the controlling of the accuracy 

of approximation in a certain range and can easily be parallelized. This makes it possible to solve 

and estimate a large class of models. We hope that this algorithm will be useful in a large number 

of applied research areas, including those devoted to developing economies, where many ratios that 

are stable for developed economies change significantly, making their analysis impossible with the 

use of standard techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
21

 The use of simple techniques can strongly reduce the effectiveness of the algorithm, and the use of 
adaptive algorithms requires the proof of their validity (see Roberts and Rosenthal (2007, 2009)). See also 
Giordani and Kohn (2010) and Hoogerheide et al. (2012) for  algorithms of proposal distribution 
construction. 
22

 See, for instance, Shmitt-Grohe and Uribe (2004) or Kim et al. (2008). 
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APPENDIX A 
 

Substituting (4) in (1), we receive 

∫ ( ( (               )                       )  (               )           

                     )  (           )        

or first-order approximation 

∫(  
 (  

 (  
        

      
      

  )    
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   )  (           )        

We collect coefficients under the same terms:  
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Having solved the system of equations relative to   
  (see for example, Sims (2002)), we 

substitute this solution in the subsequent equations and receive   
  and   

 . It is also easy to see that 
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APPENDIX B 
 

A household maximizes its utility function given by: 

   ∑  (
    
   

  

   
   

    
   

   
)

 

   

 

subject to an intertemporal budget constraint: 

           (    )       (   )          (B.1) 

 First-order conditions: 

 
   

    
  (

    

  
)
  

      (B.2) 

        
  

     
      (B.3) 

 The production function has the following form: 

                 
   

        (B.4) 

 First-order conditions: 

     
  

  
     (B.5) 

           (   )
  

  
      (B.6) 

 Exogenous processes: 
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     (B.8) 

                
 

     (B.9) 

     
 
       

 
        (B.10) 

 

 B.1. Steady-state system 

 

 The steady-state system can be written in the following form: 

      
     

  (    
  )    

    
        (B.1.ss) 

 
   

    
         (B.2.ss) 

                
  (  
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  )     (B.3.ss) 

      
     (  
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  )       (B.4.ss) 
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             (B.6.ss) 
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 The solution is given by: 

       
      (   )    (B.7.ss) 
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  )

 

   
     (B.8.ss) 
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Next, solve the following equation with respect to   
  : 
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                 (B.10.ss) 

Finally, find   
  ,   

   and   
  : 
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  )

 

   
  
                             (B.11.ss) 

      
     

    
        

  (    
  )             (B.12.ss) 

   
     (  

  ) (  
  )                    (B.13.ss) 

System of differential equations:   

           (     )                (   )                            (B.1.dif) 

                                   (B.2.dif) 

                             (B.3.dif) 

                (   )                (B.4.dif) 

                             (B.5.dif) 

                 (B.6.dif) 

 

B.2. Log-linearized system 

 

The log-linearization of the steady-state system has the following form: 

  
       

       
    

  (     )    
    

  (     )  (   )  
          (B.1.lin) 

       
  
   

    
      (         )                  (B.2.lin) 

              
 
        (B.3.lin) 

           (   )      (B.4.lin) 

                        (B.5.lin) 

                        (B.6.lin) 

          
 
      

 
        (B.7.lin) 
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APPENDIX C 
 

      C.1. Algorithms for the trend part 

 

C.1.1. Grid search 

A simple search is conducted when splitting the interesting space (a cube [     ]  after 

some transformation), finding the solution in nodes and the approximation inside if it is necessary. 

For one trend the linear function can be used, for two the bilinear one and so on. 

   

 C.1.2. Smolyak’s algorithm 

 

 Smolyak’s algorithm (Smolyak (1963))  is the standard algorithm in a sparse grid.
23

 A 

number of extensions have been offered for Smolyak’s algorithm (see, for instance, Judd et al. 

(2014)); however, for simplicity we use the standard algorithm. 

 Instead of a simple grid search, the tensor product with a number of restrictions is used. We 

will determine a set of nodes of order i on the k-th coordinate (after the linear transformation to 

interval [-1; 1]) using the following formula: 

  
       (

   

    
 )            

where                  for    . 

 Instead of the simple grid search, in which the set of nodes is determined by: 

  
       

    
     

       

   

Smolyak’s algorithm determines this set as: 

⋃     
        

 

       ∑      

 

 In the paper we use grids with    ,     and     (see figure C1). 

       

 

 

 

 

                                                      
23

 Smolyak’s algorithm was used as a representative of sparse grid algorithms. Other algorithms in a sparse 
grid can be used as an approximation for the trend and cycle.  
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        Figure C1а. Smolyak’s grid, q = 3                      Figure C1b. Smolyak’s grid, q = 4 

                               

Figure C1c. Smolyak’s grid, q = 5 

 

Function  (       ) is approximated by: 

 ̃(         )  ∑ (  )  ∑   (
   

  ∑  
)

   (       ) ∑     

 ∑   (         ) 

where  ∑   (   )   ∑  
   

    
∑              (  )      (  )

   

    
 and   (  ) are Chebyshev 

polynomials. 

 

 C.1.3. Linear approximation 

 

Here the linear approximation is an approximation of function  (       ) around    

 ̃(         )   (  
      

 )  ∑  (     
 )

 

   

 

In other words, the linear approximation is the tangent plane at   . 

 

 C.1.4. Solution in a finite number of points 

 

As can be seen from equations (6)‒(7) and the estimation algorithms, it is necessary to solve 

the model only in a finite number of points. Applying algorithms based on the particle filter or 
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alternate sampling of trends and parameters, it is necessary to solve the model for the NT and 2T 

points. 

 

 C.1.5. Grid search using differential equations 

. 

Under continuous differentiability assumption, system (3) can be written as follows: 

  
        

        
        

        
        

If also matrix   
    

    
  is not singular: 

     (  
    

    
 )  (  

    
 )     

 

Having the solution in one point and extending it by the received system of differential equations, it 

is possible to find the solution in the interesting area. In this paper, in the example with two trends, 

firstly we find the solution for one fixed point on the second coordinate (at the point of the exact 

solution). We fix    
   

 and find    (   
       

   ) for             , moving with a constant step 

from zero in both directions. Then for              we calculate    (   
       

   
) in the same 

way for each  . The results of this method depend on an order of trends in vector    . This can be 

avoided by an exhausting search (using all the possible permutations), but it leads to an increase in 

the running time of the algorithm. 

 

      C.2. Algorithms for the trend part 

 

C.2.1. Grid search, Smolyak’s algorithm and linear approximation 

 

These algorithms are essentially no different from those presented for trends. The linear 

solution of type (6) is found. After that, we provide pointwise approximation for   
 (  ),   

 (  ), 

  
 (  ). 

 

 C.2.2. Solution in a finite number of points 

 

The algorithm is similar to the algorithm for trends. 

 

 C.2.3. Constant approximation 
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Matrices   
 (  ),   

 (  ) and   
 (  ) are assumed to be independent of    and equal to the 

linear approximation in one point. 
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APPENDIX D 
Table 1. Model parameters 

Parameter Value 

  0.025 

  0.99 

  5 

  0.33 

  2 

  2.5 

   0.01 

   0.02 

   0.04 

  0.7 

 

Table 2.a. Error in B.10.ss, log10(abs) 

 

Max Mean 

Grid search -4.2 -4.7 

Approximation in a finite number of points - - 

Linear approximation -0.2 -1.0 

Smolyak’s algorithm (29 nodes) -1.8 -2.7 

Smolyak’s algorithm (13 nodes) -1.2 -2.0 

Smolyak’s algorithm (5 nodes) -0.4 -1.2 

DE 99x99 -1.7 -2.4 

DE 9x9 -0.1 -0.8 

 

Table 2.b. Steady-state error for labour, log10(abs)  

 

Max Mean 

Grid search -3.9 -Inf 

Approximation in a finite number of points - - 

Linear approximation 0.2 -0.9 

Smolyak’s algorithm (29 nodes) -1.4 -2.5 

Smolyak’s algorithm (13 nodes) -0.9 -1.7 

Smolyak’s algorithm (5 nodes) -0.1 -1.0 

DE 99x99 -1.6 -2.2 

DE 9x9 -0.5 -1.1 

 

Table 2.c. Running time for trend approximation, 2T = 200, NT = 100,000, sec 

 
2T NT 

Grid search 30.22 30.56 

Approximation in a finite number of points 0.61 305.48 

Linear approximation 0.02 0.11 

Smolyak’s algorithm (29 nodes) 0.11 1.29 

Smolyak’s algorithm (13 nodes) 0.06 1.20 

Smolyak’s algorithm (5 nodes) 0.02 1.15 
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DE 99x99 0.27 1.62 

DE 9x9 0.01 1.37 

Table 3. Running time for cycle approximation, 2T = 200, NT = 100,000, sec 

 
2T NT 

Grid search 9.38 12.15 

Approximation in a finite number of points 0.19 97.70 

Linear approximation 0.004 0.04 

Constant approximation 0.001 0.001 

Smolyak’s algorithm (29 nodes) 0.03 0.60 

Smolyak’s algorithm (13 nodes) 0.02 0.56 

Smolyak’s algorithm (5 nodes) 0.006 0.50 

 

Table 4.a. Error of the full solution,        , log10(abs) 

  
(B.1) (B.2) (B.3) (B.4) (B.5) (B.6) 

Grid search 
Max -3.21 -3.97 -3.75 -15.44 -15.29 -15.37 

Mean -5.39 -5.57 -4.31 -Inf -Inf -Inf 

Approximation in a finite number of 
points 

Max -3.21 -3.97 -6.32 -15.44 -15.29 -15.34 

Mean -5.4 -5.59 -Inf -Inf -Inf -Inf 

Linear approximation 
Max -0.35 0 -0.02 -14.44 -13.88 -14.57 

Mean -1.75 -1.06 -0.79 -Inf -Inf -Inf 

Smolyak’s algorithm (29 nodes) 
Max -3.18 -3.68 -1.41 -15.46 -15.23 -15.36 

Mean -5.27 -5.34 -2.3 -Inf -Inf -Inf 

Smolyak’s algorithm (13 nodes) 
Max -2.85 -2.92 -0.8 -15.49 -15.29 -15.36 

Mean -4.63 -4.65 -1.57 -Inf -Inf -Inf 

Smolyak’s algorithm (5 nodes) 
Max -2.25 -2.43 -0.11 -15.46 -15.29 -15.36 

Mean -4.23 -4.31 -0.85 -Inf -Inf -Inf 

 

Table 4.b. Error of the full solution,     , log10(abs) 

  
(B.1) (B.2) (B.3) (B.4) (B.5) (B.6) 

Grid search 
Max -1.34 -1.76 -3.75 -15.26 -15.03 -15.18 

Mean -3.22 -3.16 -4.3 -Inf -Inf -Inf 

Approximation in a finite number of 
points 

Max -1.34 -1.77 -6.34 -15.14 -15.03 -15.1 

Mean -3.22 -3.16 -Inf -Inf -Inf -Inf 

Linear approximation 
Max 0 0 -0.02 -12.82 -12.52 -12.87 

Mean -0.13 -0.07 -0.8 -Inf -Inf -Inf 

Smolyak’s algorithm (29 nodes) 
Max -1.33 -1.73 -1.4 -14.94 -14.82 -14.88 

Mean -3.22 -3.18 -2.33 -Inf -Inf -Inf 

Smolyak’s algorithm (13 nodes) 
Max -1.19 -1.5 -0.8 -15.19 -15 -14.97 

Mean -3.08 -3.16 -1.57 -Inf -Inf -Inf 

Smolyak’s algorithm (5 nodes) 
Max -1.28 -1.53 -0.11 -15.22 -15.15 -15.12 

Mean -2.98 -3.18 -0.85 -Inf -Inf -Inf 

 


