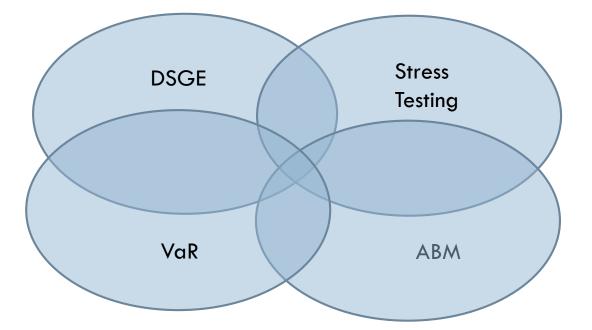


SYSTEM DYNAMICS AND STRESS TESTING

Laura Valderrama International Monetary Fund

IMF-Bank of Russia Workshop Recent Developments in Macroprudential Stress Testing Bank of Russia, 4-5 September, 2018

Outline

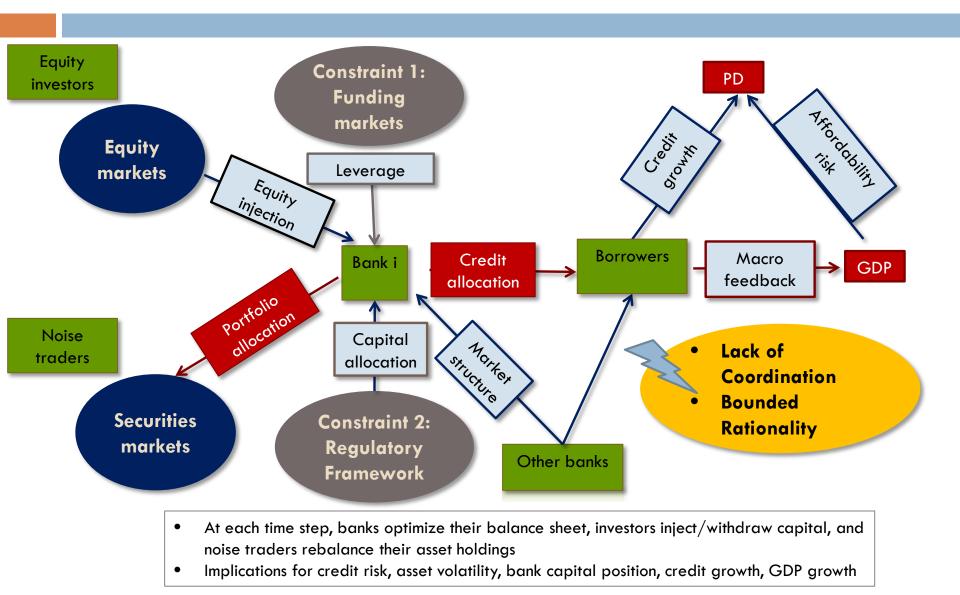

- Objective
- System Dynamics
- Banks
- Borrowers
- Non-bank Financial Institutions
- Macro-feedback
- Calibration

Objective

- Identify shocks and quantify feedback effects that might affect financial stability and the real economy
 - Assess banks' individual behavior and system-wide dynamics under different scenarios
 - Examine propagation of shocks within the financial system
 - Measure the impact on credit growth and GDP growth
- Facilitate a rapid policy response to shocks
 - Evaluate the impact of changes to bank capital regulation...
 - ... and other financial sector policies
 - Liquidity regulation, regulatory treatment of provisions (IFRS 9), NPL guidance, LTRO, banking system structure

Modeling Approach

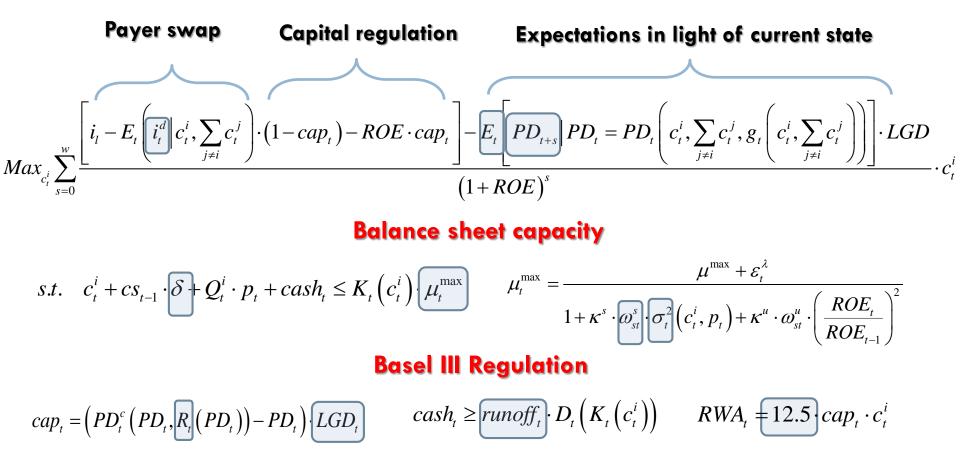
Examine the transmission mechanism of different types of shocks: exogenous risk (scenario) and endogenous risk (firms' reaction to shocks)


Key Features

- Incorporates behavioral response (banks, non-banks)
- Examines interaction of risks (credit risk, market risk, liquidity risk)
- Endogenizes funding access (leverage), fire sales (portfolio rebalancing), capital dynamics (equity)
- Enables a consistent macroprudential policy framework
- Flexible and transparent tool:
 - Banks' business models (business strategy; ROE targets; funding model)
 - Binding regulatory/market constraints

Ingredients

System Interactions


Policy Instruments

Banks	 Monetary Policy LTRO, TLTRO Forward Guidance Asset purchases/collateral framework Accounting Policy Provisions Prudential Capital requirements: structural (min), cyclical (buffers) IRB correlation factor LGD floor Run-off rate (LCR), funding structure (NSFR) Guidance on NPL/write-offs
Borrowers	 Macroprudential policy LTI, DSTI
Noise Traders	 Liquidity regulation Redemption policy

Credit Division

Cournot competition Credit allocation maximizes expected net profits given current state, subject to constraints.

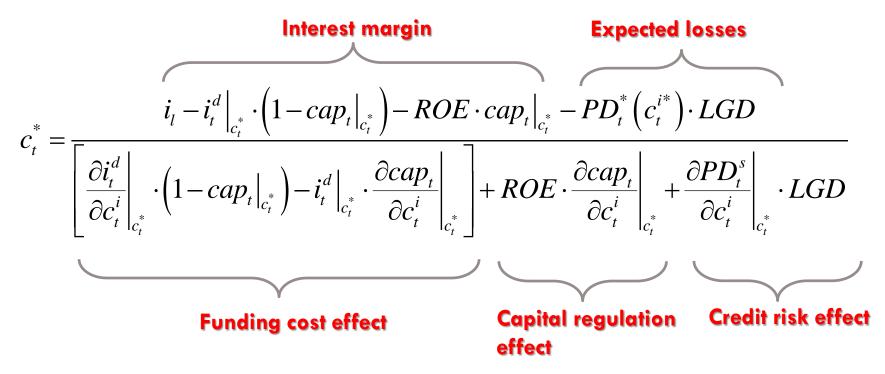
Credit Policy

Credit allocation

$$c_t^i = \sum_{j=1}^{\tau} L_t^j = \tau \cdot L_t$$

Banks' underwriting standards define the LTI distribution

$$L_{t}^{j} = \mathbf{B}_{t}^{j} \cdot E(I_{t}^{j})$$
such that
$$\mathbf{B}_{t}^{j} < \mathbf{B}_{t}^{\tau}$$


Subject to regulatory policy

Credit flow depends on underwriting standards and income $c_t^i = \sum_{i=1}^{\tau} \mathbf{B}_t^j \cdot E_t(I_t^j)$

 $\frac{L_t}{E(I_t^j)} \leq \mathbb{B}_t^{\max}$

Credit Allocation

□ At the optimum:

Provided the bank has enough BS capacity (determined by loan tenure, market leverage, regulatory framework)

Securities Division

Banks exploit mispricing of securities:

- (i) securities are measured at fair value (trading book)
- (ii) banks take into account the cost of capital to cover market risk

Business model

$$Q_{t}^{i} \cdot p_{t} = \begin{cases} 0 & \text{if } L > p_{t} + \delta_{t} \\ \beta_{i} \cdot \left(L - \left(p_{t} + \delta_{t}\right)\right) \cdot K_{t} - cash_{t} - cs_{t-1} \cdot \delta - c_{t}^{i} & \text{if } L - \frac{\lambda_{t}^{\max}}{\beta_{i}} < p_{t} + \delta_{t} < L \\ \lambda_{t}^{\max} \cdot K_{t} - cash_{t} - cs_{t-1} \cdot \delta - c_{t}^{i} & else \end{cases}$$

where market risk is defined according to Basel IMM approach

$$\delta_t = i_t^d \cdot (1 - capmk_t) + ROE \cdot capmk_t \qquad capmk_t = G(0.99) \cdot 3 \cdot \sqrt{10} \cdot \sigma_t^2$$

and the volatility of asset prices follows an autoregressive process $\sigma_t^2 = \theta \cdot \sigma_{t-1}^2 + (1-\theta) \cdot \log(p_t / p_{t-1})^2$

Evolution of Capital

Capital evolves with

- Dynamic balance sheet (rebalancing of portfolio)
- Mark-to-market gains/losses in traded securities
- Net interest income
- Loan loss provisions (new credit + revision of provisions from credit risk migration)
- Investors' capital flow
- Dividend payout
- □ If capital falls below the minimum regulatory level
 - Banks continue operating even if their capital falls below regulatory minimum (benchmark)
 - Banks are forced to be raise capital to satisfy the regulatory minimum (recapitalization)
 - Credit and dividend payout is constrained (CCB)

Borrowers

Income distribution

$$\left\{E_t\left(I_t^j\right)\right\}$$
 if $\tau > j \Longrightarrow E_t\left(I_t^\tau\right) < E_t\left(I_t^j\right)$

- $\square \text{ The probability of default of borrower } j$ $PD_{t+s}^{j} = \left\{ \# I_{t+s}^{j} \middle| \left[(1-\delta) + i_{t}^{j} \right] \cdot L_{t}^{j} > I_{t+s}^{j} \right\}$
- □ The probability of default of the portfolio $PD_t^i(c_t^i) = \sum_{j=1}^{\tau} PD_t^j$
- □ PD rises with credit growth and declines with growth $\frac{\partial PD}{\partial PD} = \int \frac{\partial PD}{\partial PD}$

$$\frac{\partial PD_{t}}{\partial c_{t}^{i}} > 0 \text{ and } \frac{\partial PD_{t}}{\partial c_{t}^{i}} > 0$$
$$\frac{\partial PD_{t}}{\partial E_{t}(g_{t})} < 0 \text{ and } \frac{\partial PD_{t}^{c}}{\partial E_{t}(g_{t})} > 0$$

Noise Traders

- The price of securities is determined by aggregate demand from banks and noise traders (Thurner et al, 2012)
- Noise traders are willing to hold additional securities at a lower price – fire sales channel
- Noise traders' demand given by value of holdings

$$\log(V_t) = \rho \cdot \log(V_{t-1}) + (1 - \rho) \cdot \log\left(L \cdot \frac{S}{N \cdot Q^b}\right) + \sigma \cdot \tilde{\chi}_t \longleftarrow \text{Stochastic}$$

Market clearing

$$\frac{V_t}{\left(p_t\right)} + \sum_{i=1}^{N} Q_t^i\left(p_t\right) = S$$

Equity Investors

 A pool of investors inject/withdraw capital based on a moving average of banks' recent performance (Thurner et al, 2012)

$$F_t = b \cdot (r_t - ROE) \cdot K_t$$

The performance of the bank is measured in terms of its net asset value

$$NAV_{t} = NAV_{t-1} \cdot \frac{K_{t} - F_{t-1}}{K_{t-1}} \qquad r_{t}^{NAV} = \ln\left(\frac{NAV_{t}}{NAV_{t-1}}\right)$$

 Investors make decisions based on an exponential moving average of returns

$$r_t = (1-a) \cdot r_{t-1} + a r_t^{NAV}$$

Macro-feedback effects

IS Curve

$$E_t(g_t) = \alpha_y \cdot E_{t-1}(g_t) + (1 - \alpha_y) \cdot E_t(g_{t+1}) + \beta_y \cdot \log(N \cdot cs_{t-1}) N \cdot cs_{t-2}) - \gamma_y \cdot (i_t^l - \rho) + \varepsilon_t^y$$

Expectations Augmented Phillips Curve

$$E_t(\pi_t) = \alpha_{\pi} \cdot E_{t-1}(\pi_t) + (1 - \alpha_{\pi}) \cdot E_t(\pi_{t+1}) + \beta_{\pi} \cdot E_t(g_t) + \varepsilon_t^{\pi}$$

Monetary Policy "Taylor-type" Rule

$$r_{t} = \alpha_{r} \cdot \left[\left(\rho + \pi^{T} \right) + \beta_{r} \cdot \left(E_{t}(\pi_{t}) - \pi^{T} \right) + \gamma_{r} \cdot \left(E_{t}(g_{t}) - y^{*} \right) \right] + \left(1 - \alpha_{r} \right) \cdot r_{t-1} + \varepsilon_{t}^{r}$$

Credit spreads $s_{t} = \rho_{s} \cdot s_{t-1} + \alpha_{s} \cdot libor_{t} + \left(v_{t} \cdot \frac{CAR_{t}}{rCAR_{t}} \right) \varepsilon_{t}^{s}$

Interest rates $i_t^d = r_t + s_t + \varepsilon_t^d$

Global funding conditions Excess regulatory capital

Funding costs (policy rate, bank credit spreads)

Lending rates (funding costs, pass-through, borrower credit spreads) 22

$$i_t^l = \alpha_l \cdot (i_t^d + m) + (1 - \alpha_l) \cdot (y * -E_t(g_t)) + \varepsilon_t^l$$

Reduced-form

- For the calibration, the following macro-econometric equation is estimated
- □ Key variables:
 - Expected GDP growth
 - Potential output
 - Credit growth

$$g_{t} = \alpha_{y} \cdot g_{t-1} + \gamma_{y} \cdot y^{*} + \left(1 - \alpha_{y} - \gamma_{y}\right) \cdot \log\left(N \cdot cs_{t-1} / N \cdot cs_{t-2}\right) + \varepsilon_{t}^{y}$$

Key Initial Conditions

- Core parameters N = 5 T = 60
- Balance sheet

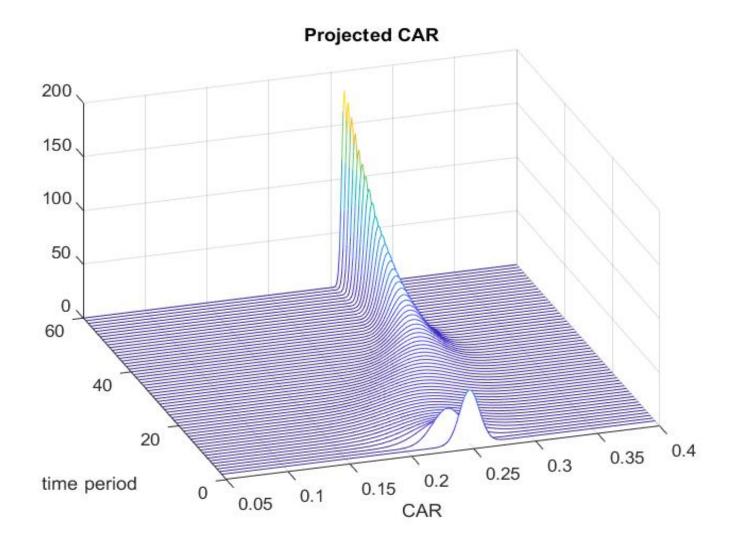
 $A_{0} = 183.4$ $cs_{0} = 157.0$ $cash_{0} = 26.41$ runoff = 0.15 $K_{0} = 7.336$ $D_{0} = 176.06$ $\lambda_{t} = 25$ $CAR_{0} = 11.4\%$ $RWA_{0} = 64.351$ $\mu^{max} = 25$ $\mu_{1}^{max} = 24.75 \text{ given } \kappa = 100, \sigma_{0}^{2} = 0.0001$

Rates Securities market $\pi_0 = 0.03$ $i_0^{\prime} = 0.06$ $p_0 = 0.9 (L=1)$ $yn_0 = 319.4$ $i_0^{\prime} = 0.04$ $V_0 = 900$ $y_0 = 0.86 \cdot y$ ROE = 0.08 $\sigma = 0.0001$ $\rho_y = 0.8$

Credit risk

$$PD_{0} = 0.16\%$$

$$PD_{0}^{c} = 4.78\%$$


$$PD_{t} = 0.005 + 0.0056 \cdot \ln\left(\frac{N \cdot cs_{t}}{N \cdot cs_{t-1}}\right) - 0.09E_{t}(g_{t}) + \varepsilon_{t}^{PE}$$

$$LGD = 0.6$$

• Macroeconomy $g_0 = 0.03$ $\Delta c_0 = 0$ $y^* = 0.03$ $\pi_0 = 0.02$ $yn_0 = 319.4$ $y_0 = 0.86 \cdot yn_0$ $\rho_y = 0.8$ $\gamma_y = 0.1$

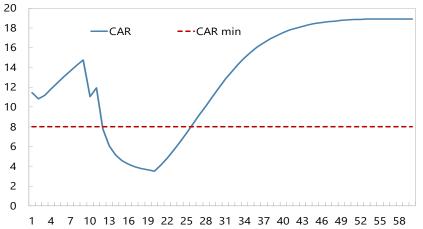
Baseline

Adverse Scenarios

□ GDP shock

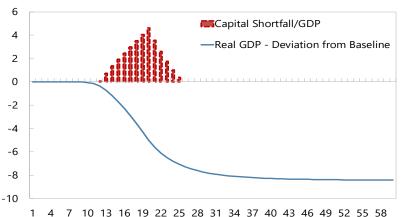
if
$$t = 10$$
 $\varepsilon_t^y = -0.01$
if $t \in [12, 20]$ $\varepsilon_t^y = -0.02$

□ Funding (liquidity) shock if $t \in [12,60] \varepsilon_t^{\lambda} = -4$


Market (liquidity) shock

$$if \ t \in [12,20] \begin{cases} \sigma = 0.05 \\ \chi_t < 0 \end{cases}$$

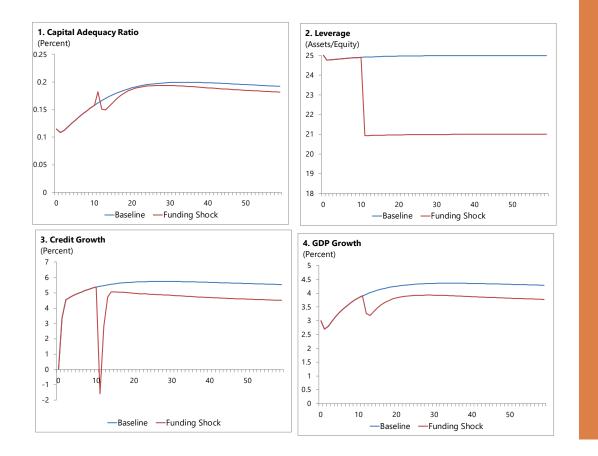
GDP shock



Real Effects

(Percent)

GDP Projections are **endogenous** to banks' reaction to stress

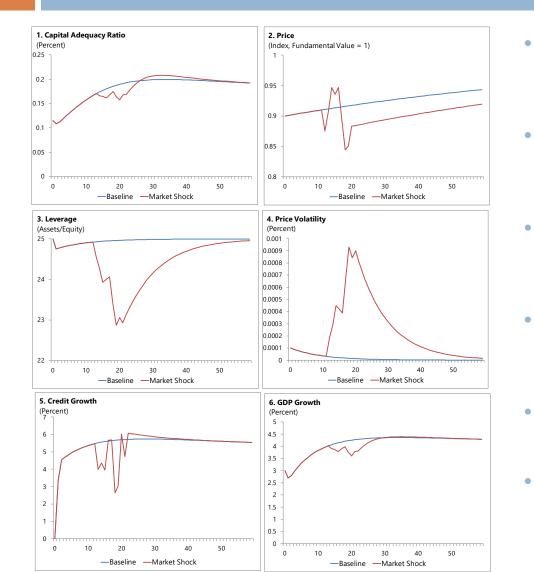

Despite recovery in banks' capital ratios, **permanent** real effects

Recessions **deeper** and more **persistent** when second-round effects are included

Bank recapitalization peaks at 5 percent of nominal GDP

Over 5-year, cumulative **real gdp** declines by 8 percent relative to baseline

Funding shock



Bank Deleveraging has an initial positive impact on banks' capital ratios

Even if banks' capital position stabilizes, real effects become permanent

Over 5-year, cumulative **real gdp** declines by 2 percent relative to baseline

Market shock

A MARKET SHOCK (REDEMPTIONS FROM NOISE TRADERS) MORPHS INTO...

- ...A LIQUIDITY SHOCK (THROUGH LEVERAGE CONSTRAINT) AND...
- ...A CREDIT SHOCK (THROUGH BANKS' BEHAVIORAL RESPONSE)...
- ... INCREASING DEFAULT RISK (THROUGH SECOND-ROUND EFFECTS)...
- ...SLOWING DOWN ECONOMIC GROWTH...
- ...CUMULATIVE REAL GDP DECLINES BY 1 PERCENT RELATIVE TO BASELINE

Thank you