Secular Rise and Pro-cyclical Variation in Markups: Evidence from US Grocery Stores.

B. Gafarov, T. Gong, J. Hilscher

UC Davis

Motivation

- ▶ Evidence on Rising Markups: across US sectors, especially in the retail sector (e.g. De Loecker et al. [2020, QJE] , Philippon [2019]).
- ► Trend in markups affects important stylized facts Eggertsson et al. [2021, JME] link markups to wealth-to-income ratio, Tobin's Q, real interest rate, and investment-to-output ratio (also see Syverson [2019, JEP])
- ▶ Is there a connection between markups and the business cycle? Stroebel and Vavra [2019, JPE] present evidence that retail prices react to household wealth, suggesting an effect on markups.
- ► Little higher-frequency empirical evidence on pro-cyclical market power Nekarda and Ramey [2020, JMCB] present macro-level time series evidence

Methodology

- Estimate elasticity of demand faced by stores: local elasticity is estimated based on observations resulting from market equilibrium outcomes.
- ► **Our Approach**: Use panel-IV to estimate local average *market-year-category* elasticity.
 - 1. Implement Hausman [1996] price IV by pairing geographically close markets.
 - 2. Use time fixed effects to control for common demand shocks.
 - 3. Estimate price elasticities at the less-noisy product-category level.
- ▶ Use Lerner index of markups $\frac{e}{e-1}$: corresponds to store's optimal price setting strategy in equilibrium [Lerner, 1934, DellaVigna and Gentzkow, 2019]

Preview of Results

- New estimates of trend and business cycle variation in markups: consistent with previous work on markup trend estimated from cost data.
 - 1. *Elasticity*: downward trend (0.04/year) + increase after recessions (0.16/year).
 - 2. *Implied Markups*: upward trend (4%/year) + decrease after recessions (14%/year).
- New cross-sectional evidence on effects of income on markups
- ► Important implications for policy: suggests transmission mechanism of monetary policy through effect on markups.

Previous Work on Sector-wide Rising Markups

- ▶ Supply-side Evidence: cost minimization; firm-level accounting data; many sectors; higher in retail sector De Loecker et al. [2020].
- ► **Demand-side Evidence**: profit maximization; scanner data of store-product sales; food retail sector.
 - 1. Structural approach (BLP): analyze generally small sets of both food and nonfood products [De Loecker and Scott, 2016, Brand, 2021, Döpper et al., 2022].
 - 2. *Our Paper*: (i) panel-IV; (ii) all food products; (iii) sizable & significant markup variations around business cycles; and (iv) longer sample period.

Elasticity: Data

▶ Retail Scanner Data: 2001-2020.

- 1. IRI, 2001-2012 (Bronnenberg et al., 2008).
- 2. NielsenIQ, 2006-2020 (the Kilts Center for Marketing at UChicago).
- 3. Weekly product quantities and revenues at the store level for each barcode (UPC).

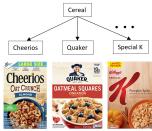
Food Products, Food Stores

- 1. IRI: 16 categories.
- 2. Nielsen: 60 categories.

Category-level statistics

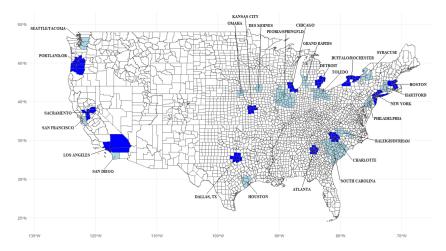
	IRI	Nielsen
	mean	mean
#UPCs/year	2,097	4,412
#UPCs/year-market	541	1,052
#UPCs/year-market-store	214	339

Examples: cereal.



Paired neighboring markets in major US regions

A market, defined by IRI, consists of one or several adjacent counties. Among 50 IRI markets, select 26 relatively large ones as 12 close pairs.



Elasticity: panel-IV approach

• Within each market(m)-category(c)-year(t) pair:

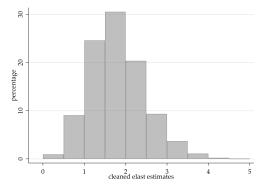
 $log(q_{v,s,w}) = -\boldsymbol{e_{m,c,t}}log(p_{v,s,w}) + UPC_v + store_s + week_w + \varepsilon_{v,s,w},$

where $q_{v,s,w}$ and $p_{v,s,w}$ denote the quantity and (imputed) price of **product** v sold by store s in week w.

- 1. *Price IV*: the quantity-weighted average of log weekly prices of the same product sold in the paired market(s).
- 2. Fixed effects: various demand effects.
 (i) week_w: local demand shocks + prices of other categories;
 (ii) UPC_v: local preferences over products;
 (iii) store_s: local preferences over stores.
- 3. Clustered standard errors: at store and week levels.

Elasticity: cleaned estimates

- Cleaned elasticity estimates: IRI & Nielsen, 25,100/27,500 (91%).
 - 1. Drop: weak IV + negative estimates.
 - 2. Trim: upper and lower 1% by year.

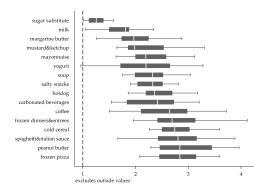


▶ Distribution: 5% significantly below 1 while 10% below 1.

▶ *Precision*: 95% standard errors below 0.4.

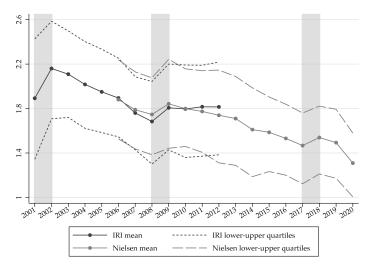
Elasticity: differences across categories and markets

▶ IRI elasticity estimates in 2010.



- Cereal: mean of 2.5 for 2007-2010 in LA, close to mean of 2.2 estimated by Richards and Hamilton [2015, REStat].
- ► Yogurt: [1.0, 4.2] for 2001-2010 in 26 markets; Hristakeva [2022, JPE] has a mean estimate of 4.0 for all markets during the same period.

Elasticity: Time Variation



Levels of IRI estimates shifted to match mean Nielsen estimates in the overlap sample period. Quantiles reported: 25% and 75%

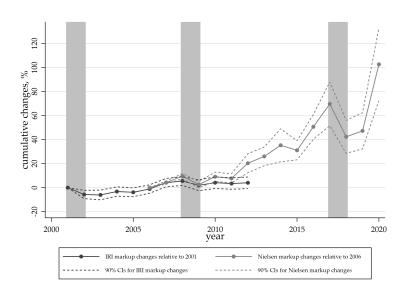
Impute Markup from Elasticity

- ► Calculate average elasticity: compute good-weighted elasticity at the market level.
- ▶ Monopolistic Pricing: set price to maximize profit (e.g., DellaVigna and Gentzkow [2019, QJE]).

1. Markup:
$$\frac{p}{mc} = \frac{e}{e-1}$$
.

2. Cumulative percentage change: $ln(\frac{e_t}{e_t-1}) - ln(\frac{e_{t_0}}{e_{t_0}-1})$.

Time Variation in Makrups

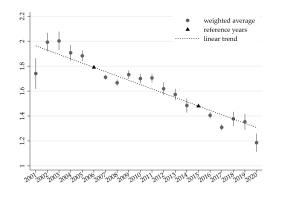


Elasticity: trend and cyclical decomposition

Panel regression

 $\hat{e}_{m,c,t} = trend_t + year_t + data_d \times market_m \times category_c + u_{m,c,t},$

with the inverse of elasticity s.e. as weights and $u_{m,c,t}$ clustered at the market level.



Elasticity and Implied Markup: trend and cyclical variation

	elasticity	markup
Trend		
average annual change, 2001-2020	-0.035***	$3.9\%^{***}$
	(0.004)	(0.7%)
Cyclical changes		
from 2001 to 2002	0.286^{***}	-15.1%***
	(0.052)	(2.8%)
from 2008 to 2009	0.100***	-8.0%***
	(0.013)	(1.0%)
from 2017 to 2018	0.103***	-17.8%***
	(0.025)	(4.3%)

Trend and Cyclical Variation in Elasticity and Implied Markup.

Driving Factors of Elasticities: data & identification

• Market-year factors $X_{m,t}$: county-level raw data; take ln and then weight by population.

real GDP per capita/unemployment rate/real housing price/population/ econ dependency ratio/No. of grocery establishments per 10k residents.

▶ Use fixed effects regression weighted by elasticity s.e.

Driving Fac	ctors of	Elasticities:	estimation	results

	dependent	variable:	elasticity
	(1)	(2)	(3)
explanatory variables	main	variety	balanced
real GDP per capita	-0.85***	-0.82***	-0.90***
	(0.16)	(0.15)	(0.14)
unemployment rate	1.49	1.51	1.46
	(1.25)	(1.20)	(0.98)
cum. change in real housing price	0.40^{***}	0.38^{***}	0.29^{***}
	(0.13)	(0.11)	(0.09)
economic dependency ratio	0.35	0.31	-0.03
	(0.38)	(0.33)	(0.26)
population	-1.20^{**}	-1.12^{**}	-0.73^{***}
	(0.56)	(0.42)	(0.26)
grocery establishments per capita	-0.02	-0.05	-0.13
	(0.17)	(0.14)	(0.11)
No. of UPCs per category		0.10	
		(0.12)	
market×category FE	YES	YES	YES
year FE	YES	YES	YES
$adj.R^2$	0.337	0.341	0.405
N	25,062	25,062	19,746

Note: (1)-(3) are OLS regressions with the reciprocals of elasticity variances as weights. Standard errors of coefficients, clustered at the market level, are listed in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001.

Conclusion

- ▶ Implement a panel-IV approach to precisely estimate own-price elasticities of demand; aggregate at the year-market-category level.
- ▶ Trend and cyclical variation in own-price elasticities of demand imply rising and pro-cyclical markups in the food retail sector.
- ▶ Economic factors, such as real GDP per capita, drive these changes.

Elasticity: OLS versus IV

IRI sample: attenuation bias of OLS estimates relative to IV's.

